New common FSK implementation, replaces all individual implementations
This commit is contained in:
@@ -24,7 +24,7 @@ libcommon_a_SOURCES = \
|
||||
compandor.c \
|
||||
fft.c \
|
||||
fm_modulation.c \
|
||||
ffsk.c \
|
||||
fsk.c \
|
||||
hagelbarger.c \
|
||||
sender.c \
|
||||
display_wave.c \
|
||||
|
||||
@@ -1,256 +0,0 @@
|
||||
/* FFSK audio processing (NMT / Radiocom 2000)
|
||||
*
|
||||
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
|
||||
* All Rights Reserved
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#define CHAN ffsk->channel
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include <math.h>
|
||||
#include "../common/sample.h"
|
||||
#include "../common/debug.h"
|
||||
#include "ffsk.h"
|
||||
|
||||
#define PI M_PI
|
||||
|
||||
#define BIT_RATE 1200 /* baud rate */
|
||||
#define FILTER_STEPS 0.1 /* step every 1/12000 sec */
|
||||
|
||||
/* two signaling tones */
|
||||
static double ffsk_freq[2] = {
|
||||
1800.0,
|
||||
1200.0,
|
||||
};
|
||||
|
||||
static sample_t dsp_tone_bit[2][2][65536]; /* polarity, bit, phase */
|
||||
|
||||
/* global init for FFSK */
|
||||
void ffsk_global_init(double peak_fsk)
|
||||
{
|
||||
int i;
|
||||
double s;
|
||||
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "Generating sine table for FFSK tones.\n");
|
||||
for (i = 0; i < 65536; i++) {
|
||||
s = sin((double)i / 65536.0 * 2.0 * PI);
|
||||
/* bit(1) 1 cycle */
|
||||
dsp_tone_bit[0][1][i] = s * peak_fsk;
|
||||
dsp_tone_bit[1][1][i] = -s * peak_fsk;
|
||||
/* bit(0) 1.5 cycles */
|
||||
s = sin((double)i / 65536.0 * 3.0 * PI);
|
||||
dsp_tone_bit[0][0][i] = s * peak_fsk;
|
||||
dsp_tone_bit[1][0][i] = -s * peak_fsk;
|
||||
}
|
||||
}
|
||||
|
||||
/* Init FFSK */
|
||||
int ffsk_init(ffsk_t *ffsk, void *inst, void (*receive_bit)(void *inst, int bit, double quality, double level), int channel, int samplerate)
|
||||
{
|
||||
sample_t *spl;
|
||||
int i;
|
||||
|
||||
/* a symbol rate of 1200 Hz, times check interval of FILTER_STEPS */
|
||||
if (samplerate < (double)BIT_RATE / (double)FILTER_STEPS) {
|
||||
PDEBUG(DDSP, DEBUG_ERROR, "Sample rate must be at least 12000 Hz to process FSK+supervisory signal.\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
memset(ffsk, 0, sizeof(*ffsk));
|
||||
ffsk->inst = inst;
|
||||
ffsk->receive_bit = receive_bit;
|
||||
ffsk->channel = channel;
|
||||
ffsk->samplerate = samplerate;
|
||||
|
||||
ffsk->samples_per_bit = (double)ffsk->samplerate / (double)BIT_RATE;
|
||||
ffsk->bits_per_sample = 1.0 / ffsk->samples_per_bit;
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "Use %.4f samples for full bit duration @ %d.\n", ffsk->samples_per_bit, ffsk->samplerate);
|
||||
|
||||
/* allocate ring buffers, one bit duration */
|
||||
ffsk->filter_size = floor(ffsk->samples_per_bit); /* buffer holds one bit (rounded down) */
|
||||
spl = calloc(1, ffsk->filter_size * sizeof(*spl));
|
||||
if (!spl) {
|
||||
PDEBUG(DDSP, DEBUG_ERROR, "No memory!\n");
|
||||
ffsk_cleanup(ffsk);
|
||||
return -ENOMEM;
|
||||
}
|
||||
ffsk->filter_spl = spl;
|
||||
ffsk->filter_bit = -1;
|
||||
|
||||
/* count symbols */
|
||||
for (i = 0; i < 2; i++)
|
||||
audio_goertzel_init(&ffsk->goertzel[i], ffsk_freq[i], ffsk->samplerate);
|
||||
ffsk->phaseshift65536 = 65536.0 / ffsk->samples_per_bit;
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "fsk_phaseshift = %.4f\n", ffsk->phaseshift65536);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Cleanup transceiver instance. */
|
||||
void ffsk_cleanup(ffsk_t *ffsk)
|
||||
{
|
||||
PDEBUG_CHAN(DDSP, DEBUG_DEBUG, "Cleanup DSP for Transceiver.\n");
|
||||
|
||||
if (ffsk->filter_spl) {
|
||||
free(ffsk->filter_spl);
|
||||
ffsk->filter_spl = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
//#define DEBUG_MODULATOR
|
||||
//#define DEBUG_FILTER
|
||||
//#define DEBUG_QUALITY
|
||||
|
||||
/* Filter one chunk of audio an detect tone, quality and loss of signal.
|
||||
* The chunk is a window of 1/1200s. This window slides over audio stream
|
||||
* and is processed every 1/12000s. (one step) */
|
||||
static inline void ffsk_decode_step(ffsk_t *ffsk, int pos)
|
||||
{
|
||||
double level, result[2], softbit, quality;
|
||||
int max;
|
||||
sample_t *spl;
|
||||
int bit;
|
||||
|
||||
max = ffsk->filter_size;
|
||||
spl = ffsk->filter_spl;
|
||||
|
||||
level = audio_level(spl, max);
|
||||
/* limit level to prevent division by zero */
|
||||
if (level < 0.001)
|
||||
level = 0.001;
|
||||
|
||||
audio_goertzel(ffsk->goertzel, spl, max, pos, result, 2);
|
||||
|
||||
/* calculate soft bit from both frequencies */
|
||||
softbit = (result[1] / level - result[0] / level + 1.0) / 2.0;
|
||||
//printf("%.3f: %.3f\n", level, softbit);
|
||||
/* scale it, since both filters overlap by some percent */
|
||||
#define MIN_QUALITY 0.33
|
||||
softbit = (softbit - MIN_QUALITY) / (1.0 - MIN_QUALITY - MIN_QUALITY);
|
||||
#ifdef DEBUG_FILTER
|
||||
// printf("|%s", debug_amplitude(result[0]/level));
|
||||
// printf("|%s| low=%.3f high=%.3f level=%d\n", debug_amplitude(result[1]/level), result[0]/level, result[1]/level, (int)level);
|
||||
printf("|%s| softbit=%.3f\n", debug_amplitude(softbit), softbit);
|
||||
#endif
|
||||
if (softbit > 1)
|
||||
softbit = 1;
|
||||
if (softbit < 0)
|
||||
softbit = 0;
|
||||
if (softbit > 0.5)
|
||||
bit = 1;
|
||||
else
|
||||
bit = 0;
|
||||
|
||||
if (ffsk->filter_bit != bit) {
|
||||
/* If we have a bit change, move sample counter towards one half bit duration.
|
||||
* We may have noise, so the bit change may be wrong or not at the correct place.
|
||||
* This can cause bit slips.
|
||||
* Therefore we change the sample counter only slightly, so bit slips may not
|
||||
* happen so quickly.
|
||||
* */
|
||||
#ifdef DEBUG_FILTER
|
||||
puts("bit change");
|
||||
#endif
|
||||
ffsk->filter_bit = bit;
|
||||
if (ffsk->filter_sample < 5)
|
||||
ffsk->filter_sample++;
|
||||
if (ffsk->filter_sample > 5)
|
||||
ffsk->filter_sample--;
|
||||
} else if (--ffsk->filter_sample == 0) {
|
||||
/* if sample counter bit reaches 0, we reset sample counter to one bit duration */
|
||||
#ifdef DEBUG_FILTER
|
||||
puts("sample");
|
||||
#endif
|
||||
// quality = result[bit] / level;
|
||||
if (softbit > 0.5)
|
||||
quality = softbit * 2.0 - 1.0;
|
||||
else
|
||||
quality = 1.0 - softbit * 2.0;
|
||||
#ifdef DEBUG_QUALITY
|
||||
printf("|%s| quality=%.2f ", debug_amplitude(softbit), quality);
|
||||
printf("|%s|\n", debug_amplitude(quality));
|
||||
#endif
|
||||
/* adjust level, so a peak level becomes 100% */
|
||||
ffsk->receive_bit(ffsk->inst, bit, quality, level / 0.63662);
|
||||
ffsk->filter_sample = 10;
|
||||
}
|
||||
}
|
||||
|
||||
void ffsk_receive(ffsk_t *ffsk, sample_t *sample, int length)
|
||||
{
|
||||
sample_t *spl;
|
||||
int max, pos;
|
||||
double step, bps;
|
||||
int i;
|
||||
|
||||
/* write received samples to decode buffer */
|
||||
max = ffsk->filter_size;
|
||||
pos = ffsk->filter_pos;
|
||||
step = ffsk->filter_step;
|
||||
bps = ffsk->bits_per_sample;
|
||||
spl = ffsk->filter_spl;
|
||||
for (i = 0; i < length; i++) {
|
||||
#ifdef DEBUG_MODULATOR
|
||||
printf("|%s|\n", debug_amplitude((double)samples[i] / 2333.0 /*fsk peak*/ / 2.0));
|
||||
#endif
|
||||
/* write into ring buffer */
|
||||
spl[pos++] = sample[i];
|
||||
if (pos == max)
|
||||
pos = 0;
|
||||
/* if 1/10th of a bit duration is reached, decode buffer */
|
||||
step += bps;
|
||||
if (step >= FILTER_STEPS) {
|
||||
step -= FILTER_STEPS;
|
||||
ffsk_decode_step(ffsk, pos);
|
||||
}
|
||||
}
|
||||
ffsk->filter_step = step;
|
||||
ffsk->filter_pos = pos;
|
||||
}
|
||||
|
||||
/* render frame */
|
||||
int ffsk_render_frame(ffsk_t *ffsk, const char *frame, int length, sample_t *sample)
|
||||
{
|
||||
int bit, polarity;
|
||||
double phaseshift, phase;
|
||||
int count = 0, i;
|
||||
|
||||
polarity = ffsk->polarity;
|
||||
phaseshift = ffsk->phaseshift65536;
|
||||
phase = ffsk->phase65536;
|
||||
for (i = 0; i < length; i++) {
|
||||
bit = (frame[i] == '1');
|
||||
do {
|
||||
*sample++ = dsp_tone_bit[polarity][bit][(uint16_t)phase];
|
||||
count++;
|
||||
phase += phaseshift;
|
||||
} while (phase < 65536.0);
|
||||
phase -= 65536.0;
|
||||
/* flip polarity when we have 1.5 sine waves */
|
||||
if (bit == 0)
|
||||
polarity = 1 - polarity;
|
||||
}
|
||||
ffsk->phase65536 = phase;
|
||||
ffsk->polarity = polarity;
|
||||
|
||||
/* return number of samples created for frame */
|
||||
return count;
|
||||
}
|
||||
|
||||
@@ -1,27 +0,0 @@
|
||||
#include "../common/goertzel.h"
|
||||
|
||||
typedef struct ffsk {
|
||||
void *inst;
|
||||
void (*receive_bit)(void *inst, int bit, double quality, double level);
|
||||
int channel; /* channel number */
|
||||
int samplerate; /* current sample rate */
|
||||
double samples_per_bit; /* number of samples for one bit (1200 Baud) */
|
||||
double bits_per_sample; /* fraction of a bit per sample */
|
||||
goertzel_t goertzel[2]; /* filter for fsk decoding */
|
||||
int polarity; /* current polarity state of bit */
|
||||
sample_t *filter_spl; /* array to hold ring buffer for bit decoding */
|
||||
int filter_size; /* size of ring buffer */
|
||||
int filter_pos; /* position to write next sample */
|
||||
double filter_step; /* counts bit duration, to trigger decoding every 10th bit */
|
||||
int filter_bit; /* last bit state, so we detect a bit change */
|
||||
int filter_sample; /* count until it is time to sample bit */
|
||||
double phaseshift65536; /* how much the phase of fsk synbol changes per sample */
|
||||
double phase65536; /* current phase */
|
||||
} ffsk_t;
|
||||
|
||||
void ffsk_global_init(double peak_fsk);
|
||||
int ffsk_init(ffsk_t *ffsk, void *inst, void (*receive_bit)(void *inst, int bit, double quality, double level), int channel, int samplerate);
|
||||
void ffsk_cleanup(ffsk_t *ffsk);
|
||||
void ffsk_receive(ffsk_t *ffsk, sample_t *sample, int lenght);
|
||||
int ffsk_render_frame(ffsk_t *ffsk, const char *frame, int length, sample_t *sample);
|
||||
|
||||
@@ -23,13 +23,12 @@
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "sample.h"
|
||||
#include "iir_filter.h"
|
||||
#include "fm_modulation.h"
|
||||
|
||||
//#define FAST_SINE
|
||||
|
||||
/* init FM modulator */
|
||||
void fm_mod_init(fm_mod_t *mod, double samplerate, double offset, double amplitude)
|
||||
int fm_mod_init(fm_mod_t *mod, double samplerate, double offset, double amplitude)
|
||||
{
|
||||
memset(mod, 0, sizeof(*mod));
|
||||
mod->samplerate = samplerate;
|
||||
@@ -42,17 +41,27 @@ void fm_mod_init(fm_mod_t *mod, double samplerate, double offset, double amplitu
|
||||
mod->sin_tab = calloc(65536+16384, sizeof(*mod->sin_tab));
|
||||
if (!mod->sin_tab) {
|
||||
fprintf(stderr, "No mem!\n");
|
||||
abort();
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* generate sine and cosine */
|
||||
for (i = 0; i < 65536+16384; i++)
|
||||
mod->sin_tab[i] = sin(2.0 * M_PI * (double)i / 65536.0) * amplitude;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* do frequency modulation of samples and add them to existing buff */
|
||||
void fm_modulate(fm_mod_t *mod, sample_t *samples, int num, float *buff)
|
||||
void fm_mod_exit(fm_mod_t *mod)
|
||||
{
|
||||
if (mod->sin_tab) {
|
||||
free(mod->sin_tab);
|
||||
mod->sin_tab = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* do frequency modulation of samples and add them to existing baseband */
|
||||
void fm_modulate_complex(fm_mod_t *mod, sample_t *frequency, int length, float *baseband)
|
||||
{
|
||||
double dev, rate, phase, offset;
|
||||
int s, ss;
|
||||
@@ -73,25 +82,25 @@ void fm_modulate(fm_mod_t *mod, sample_t *samples, int num, float *buff)
|
||||
#endif
|
||||
|
||||
/* modulate */
|
||||
for (s = 0, ss = 0; s < num; s++) {
|
||||
/* deviation is defined by the sample value and the offset */
|
||||
dev = offset + samples[s];
|
||||
for (s = 0, ss = 0; s < length; s++) {
|
||||
/* deviation is defined by the frequency value and the offset */
|
||||
dev = offset + frequency[s];
|
||||
#ifdef FAST_SINE
|
||||
phase += 65536.0 * dev / rate;
|
||||
if (phase < 0.0)
|
||||
phase += 65536.0;
|
||||
else if (phase >= 65536.0)
|
||||
phase -= 65536.0;
|
||||
buff[ss++] += cos_tab[(uint16_t)phase];
|
||||
buff[ss++] += sin_tab[(uint16_t)phase];
|
||||
baseband[ss++] += cos_tab[(uint16_t)phase];
|
||||
baseband[ss++] += sin_tab[(uint16_t)phase];
|
||||
#else
|
||||
phase += 2.0 * M_PI * dev / rate;
|
||||
if (phase < 0.0)
|
||||
phase += 2.0 * M_PI;
|
||||
else if (phase >= 2.0 * M_PI)
|
||||
phase -= 2.0 * M_PI;
|
||||
buff[ss++] += cos(phase) * amplitude;
|
||||
buff[ss++] += sin(phase) * amplitude;
|
||||
baseband[ss++] += cos(phase) * amplitude;
|
||||
baseband[ss++] += sin(phase) * amplitude;
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -99,7 +108,7 @@ void fm_modulate(fm_mod_t *mod, sample_t *samples, int num, float *buff)
|
||||
}
|
||||
|
||||
/* init FM demodulator */
|
||||
void fm_demod_init(fm_demod_t *demod, double samplerate, double offset, double bandwidth)
|
||||
int fm_demod_init(fm_demod_t *demod, double samplerate, double offset, double bandwidth)
|
||||
{
|
||||
memset(demod, 0, sizeof(*demod));
|
||||
demod->samplerate = samplerate;
|
||||
@@ -119,21 +128,31 @@ void fm_demod_init(fm_demod_t *demod, double samplerate, double offset, double b
|
||||
demod->sin_tab = calloc(65536+16384, sizeof(*demod->sin_tab));
|
||||
if (!demod->sin_tab) {
|
||||
fprintf(stderr, "No mem!\n");
|
||||
abort();
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* generate sine and cosine */
|
||||
for (i = 0; i < 65536+16384; i++)
|
||||
demod->sin_tab[i] = sin(2.0 * M_PI * (double)i / 65536.0);
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* do frequency demodulation of buff and write them to samples */
|
||||
void fm_demodulate(fm_demod_t *demod, sample_t *samples, int num, float *buff)
|
||||
void fm_demod_exit(fm_demod_t *demod)
|
||||
{
|
||||
if (demod->sin_tab) {
|
||||
free(demod->sin_tab);
|
||||
demod->sin_tab = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* do frequency demodulation of baseband and write them to samples */
|
||||
void fm_demodulate_complex(fm_demod_t *demod, sample_t *frequency, int length, float *baseband, sample_t *I, sample_t *Q)
|
||||
{
|
||||
double phase, rot, last_phase, dev, rate;
|
||||
double _sin, _cos;
|
||||
sample_t I[num], Q[num], i, q;
|
||||
sample_t i, q;
|
||||
int s, ss;
|
||||
#ifdef FAST_SINE
|
||||
double *sin_tab, *cos_tab;
|
||||
@@ -146,10 +165,10 @@ void fm_demodulate(fm_demod_t *demod, sample_t *samples, int num, float *buff)
|
||||
sin_tab = demod->sin_tab;
|
||||
cos_tab = demod->sin_tab + 16384;
|
||||
#endif
|
||||
for (s = 0, ss = 0; s < num; s++) {
|
||||
for (s = 0, ss = 0; s < length; s++) {
|
||||
phase += rot;
|
||||
i = buff[ss++];
|
||||
q = buff[ss++];
|
||||
i = baseband[ss++];
|
||||
q = baseband[ss++];
|
||||
#ifdef FAST_SINE
|
||||
if (phase < 0.0)
|
||||
phase += 65536.0;
|
||||
@@ -169,10 +188,10 @@ void fm_demodulate(fm_demod_t *demod, sample_t *samples, int num, float *buff)
|
||||
Q[s] = i * _sin + q * _cos;
|
||||
}
|
||||
demod->phase = phase;
|
||||
iir_process(&demod->lp[0], I, num);
|
||||
iir_process(&demod->lp[1], Q, num);
|
||||
iir_process(&demod->lp[0], I, length);
|
||||
iir_process(&demod->lp[1], Q, length);
|
||||
last_phase = demod->last_phase;
|
||||
for (s = 0; s < num; s++) {
|
||||
for (s = 0; s < length; s++) {
|
||||
phase = atan2(Q[s], I[s]);
|
||||
dev = (phase - last_phase) / 2 / M_PI;
|
||||
last_phase = phase;
|
||||
@@ -181,7 +200,63 @@ void fm_demodulate(fm_demod_t *demod, sample_t *samples, int num, float *buff)
|
||||
else if (dev > 0.49)
|
||||
dev -= 1.0;
|
||||
dev *= rate;
|
||||
samples[s] = dev;
|
||||
frequency[s] = dev;
|
||||
}
|
||||
demod->last_phase = last_phase;
|
||||
}
|
||||
|
||||
void fm_demodulate_real(fm_demod_t *demod, sample_t *frequency, int length, sample_t *baseband, sample_t *I, sample_t *Q)
|
||||
{
|
||||
double phase, rot, last_phase, dev, rate;
|
||||
double _sin, _cos;
|
||||
sample_t i;
|
||||
int s, ss;
|
||||
#ifdef FAST_SINE
|
||||
double *sin_tab, *cos_tab;
|
||||
#endif
|
||||
|
||||
rate = demod->samplerate;
|
||||
phase = demod->phase;
|
||||
rot = demod->rot;
|
||||
#ifdef FAST_SINE
|
||||
sin_tab = demod->sin_tab;
|
||||
cos_tab = demod->sin_tab + 16384;
|
||||
#endif
|
||||
for (s = 0, ss = 0; s < length; s++) {
|
||||
phase += rot;
|
||||
i = baseband[ss++];
|
||||
#ifdef FAST_SINE
|
||||
if (phase < 0.0)
|
||||
phase += 65536.0;
|
||||
else if (phase >= 65536.0)
|
||||
phase -= 65536.0;
|
||||
_sin = sin_tab[(uint16_t)phase];
|
||||
_cos = cos_tab[(uint16_t)phase];
|
||||
#else
|
||||
if (phase < 0.0)
|
||||
phase += 2.0 * M_PI;
|
||||
else if (phase >= 2.0 * M_PI)
|
||||
phase -= 2.0 * M_PI;
|
||||
_sin = sin(phase);
|
||||
_cos = cos(phase);
|
||||
#endif
|
||||
I[s] = i * _cos;
|
||||
Q[s] = i * _sin;
|
||||
}
|
||||
demod->phase = phase;
|
||||
iir_process(&demod->lp[0], I, length);
|
||||
iir_process(&demod->lp[1], Q, length);
|
||||
last_phase = demod->last_phase;
|
||||
for (s = 0; s < length; s++) {
|
||||
phase = atan2(Q[s], I[s]);
|
||||
dev = (phase - last_phase) / 2 / M_PI;
|
||||
last_phase = phase;
|
||||
if (dev < -0.49)
|
||||
dev += 1.0;
|
||||
else if (dev > 0.49)
|
||||
dev -= 1.0;
|
||||
dev *= rate;
|
||||
frequency[s] = dev;
|
||||
}
|
||||
demod->last_phase = last_phase;
|
||||
}
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#include "../common/iir_filter.h"
|
||||
|
||||
typedef struct fm_mod {
|
||||
double samplerate; /* sample rate of in and out */
|
||||
@@ -7,8 +8,9 @@ typedef struct fm_mod {
|
||||
double *sin_tab; /* sine/cosine table for modulation */
|
||||
} fm_mod_t;
|
||||
|
||||
void fm_mod_init(fm_mod_t *mod, double samplerate, double offset, double amplitude);
|
||||
void fm_modulate(fm_mod_t *mod, sample_t *samples, int num, float *buff);
|
||||
int fm_mod_init(fm_mod_t *mod, double samplerate, double offset, double amplitude);
|
||||
void fm_mod_exit(fm_mod_t *mod);
|
||||
void fm_modulate_complex(fm_mod_t *mod, sample_t *frequency, int num, float *baseband);
|
||||
|
||||
typedef struct fm_demod {
|
||||
double samplerate; /* sample rate of in and out */
|
||||
@@ -19,6 +21,8 @@ typedef struct fm_demod {
|
||||
double *sin_tab; /* sine/cosine table rotation */
|
||||
} fm_demod_t;
|
||||
|
||||
void fm_demod_init(fm_demod_t *demod, double samplerate, double offset, double bandwidth);
|
||||
void fm_demodulate(fm_demod_t *demod, sample_t *samples, int num, float *buff);
|
||||
int fm_demod_init(fm_demod_t *demod, double samplerate, double offset, double bandwidth);
|
||||
void fm_demod_exit(fm_demod_t *demod);
|
||||
void fm_demodulate_complex(fm_demod_t *demod, sample_t *frequency, int length, float *baseband, sample_t *I, sample_t *Q);
|
||||
void fm_demodulate_real(fm_demod_t *demod, sample_t *frequency, int length, sample_t *baseband, sample_t *I, sample_t *Q);
|
||||
|
||||
|
||||
293
src/common/fsk.c
Normal file
293
src/common/fsk.c
Normal file
@@ -0,0 +1,293 @@
|
||||
/* FSK audio processing (coherent FSK modem)
|
||||
*
|
||||
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
|
||||
* All Rights Reserved
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include <math.h>
|
||||
#include "../common/sample.h"
|
||||
#include "../common/debug.h"
|
||||
#include "fsk.h"
|
||||
|
||||
#define PI M_PI
|
||||
|
||||
/*
|
||||
* fsk = instance of fsk modem
|
||||
* inst = instance of user
|
||||
* send_bit() = function to be called whenever a new bit has to be sent
|
||||
* receive_bit() = function to be called whenever a new bit was received
|
||||
* samplerate = samplerate
|
||||
* bitrate = bits per second
|
||||
* f0, f1 = two frequencies for bit 0 and bit 1
|
||||
* level = level to modulate the frequencies
|
||||
* coherent = use coherent modulation (FFSK)
|
||||
* bitadjust = how much to adjust the sample clock when a bitchange was detected. (0 = nothing, don't use this, 0.5 full adjustment)
|
||||
*/
|
||||
int fsk_init(fsk_t *fsk, void *inst, int (*send_bit)(void *inst), void (*receive_bit)(void *inst, int bit, double quality, double level), int samplerate, double bitrate, double f0, double f1, double level, int coherent, double bitadjust)
|
||||
{
|
||||
double bandwidth;
|
||||
int i;
|
||||
int rc;
|
||||
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "Setup FSK for Transceiver. (F0 = %.1f, F1 = %.1f, peak = %.1f)\n", f0, f1, level);
|
||||
|
||||
memset(fsk, 0, sizeof(*fsk));
|
||||
|
||||
/* gen sine table with deviation */
|
||||
fsk->sin_tab = calloc(65536+16384, sizeof(*fsk->sin_tab));
|
||||
if (!fsk->sin_tab) {
|
||||
fprintf(stderr, "No mem!\n");
|
||||
rc = -ENOMEM;
|
||||
goto error;
|
||||
}
|
||||
for (i = 0; i < 65536; i++)
|
||||
fsk->sin_tab[i] = sin((double)i / 65536.0 * 2.0 * PI) * level;
|
||||
|
||||
fsk->inst = inst;
|
||||
fsk->rx_bit = -1;
|
||||
fsk->rx_bitadjust = bitadjust;
|
||||
fsk->receive_bit = receive_bit;
|
||||
fsk->tx_bit = -1;
|
||||
fsk->level = level;
|
||||
fsk->send_bit = send_bit;
|
||||
fsk->f0_deviation = (f0 - f1) / 2.0;
|
||||
fsk->f1_deviation = (f1 - f0) / 2.0;
|
||||
if (f0 < f1) {
|
||||
fsk->low_bit = 0;
|
||||
fsk->high_bit = 1;
|
||||
} else {
|
||||
fsk->low_bit = 1;
|
||||
fsk->high_bit = 0;
|
||||
}
|
||||
|
||||
/* calculate bandwidth */
|
||||
bandwidth = fabs(f0 - f1) * 2.0;
|
||||
|
||||
/* init fm demodulator */
|
||||
rc = fm_demod_init(&fsk->demod, (double)samplerate, (f0 + f1) / 2.0, bandwidth);
|
||||
if (rc < 0)
|
||||
goto error;
|
||||
|
||||
fsk->bits_per_sample = (double)bitrate / (double)samplerate;
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "Bitduration of %.4f bits per sample @ %d.\n", fsk->bits_per_sample, samplerate);
|
||||
|
||||
fsk->phaseshift65536[0] = f0 / (double)samplerate * 65536.0;
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "phaseshift65536[0] = %.4f\n", fsk->phaseshift65536[0]);
|
||||
fsk->phaseshift65536[1] = f1 / (double)samplerate * 65536.0;
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "phaseshift65536[1] = %.4f\n", fsk->phaseshift65536[1]);
|
||||
|
||||
/* use coherent modulation, i.e. each bit has an integer number of
|
||||
* half waves and starts/ends at zero crossing
|
||||
*/
|
||||
if (coherent) {
|
||||
double waves;
|
||||
|
||||
fsk->coherent = 1;
|
||||
waves = (f0 / bitrate);
|
||||
if (fabs(round(waves * 2) - (waves * 2)) > 0.001) {
|
||||
fprintf(stderr, "Failed to set coherent mode, half waves of F0 does not fit exactly into one bit, please fix!\n");
|
||||
abort();
|
||||
}
|
||||
fsk->cycles_per_bit65536[0] = waves * 65536.0;
|
||||
waves = (f1 / bitrate);
|
||||
if (fabs(round(waves * 2) - (waves * 2)) > 0.001) {
|
||||
fprintf(stderr, "Failed to set coherent mode, half waves of F1 does not fit exactly into one bit, please fix!\n");
|
||||
abort();
|
||||
}
|
||||
fsk->cycles_per_bit65536[1] = waves * 65536.0;
|
||||
}
|
||||
|
||||
/* filter prevents emphasis to overshoot on bit change */
|
||||
iir_lowpass_init(&fsk->tx_filter, 4000.0, samplerate, 2);
|
||||
|
||||
return 0;
|
||||
|
||||
error:
|
||||
fsk_cleanup(fsk);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Cleanup transceiver instance. */
|
||||
void fsk_cleanup(fsk_t *fsk)
|
||||
{
|
||||
PDEBUG(DDSP, DEBUG_DEBUG, "Cleanup FSK for Transceiver.\n");
|
||||
|
||||
if (fsk->sin_tab) {
|
||||
free(fsk->sin_tab);
|
||||
fsk->sin_tab = NULL;
|
||||
}
|
||||
|
||||
fm_demod_exit(&fsk->demod);
|
||||
}
|
||||
|
||||
//#define DEBUG_MODULATOR
|
||||
//#define DEBUG_FILTER
|
||||
|
||||
/* Demodulates bits
|
||||
*
|
||||
* If bit is received, callback function send_bit() is called.
|
||||
*
|
||||
* We sample each bit 0.5 bits after polarity change.
|
||||
*
|
||||
* If we have a bit change, adjust sample counter towards one half bit duration.
|
||||
* We may have noise, so the bit change may be wrong or not at the correct place.
|
||||
* This can cause bit slips.
|
||||
* Therefore we change the sample counter only slightly, so bit slips may not
|
||||
* happen so quickly.
|
||||
*/
|
||||
void fsk_receive(fsk_t *fsk, sample_t *sample, int length)
|
||||
{
|
||||
sample_t I[length], Q[length], frequency[length], f;
|
||||
int i;
|
||||
int bit;
|
||||
double level, quality;
|
||||
|
||||
/* demod samples to offset arround center frequency */
|
||||
fm_demodulate_real(&fsk->demod, frequency, length, sample, I, Q);
|
||||
|
||||
for (i = 0; i < length; i++) {
|
||||
f = frequency[i];
|
||||
if (f < 0)
|
||||
bit = fsk->low_bit;
|
||||
else
|
||||
bit = fsk->high_bit;
|
||||
#ifdef DEBUG_FILTER
|
||||
printf("|%s| %.3f\n", debug_amplitude(f / fabs(fsk->f0_deviation)), f / fabs(fsk->f0_deviation));
|
||||
#endif
|
||||
|
||||
|
||||
if (fsk->rx_bit != bit) {
|
||||
#ifdef DEBUG_FILTER
|
||||
puts("bit change");
|
||||
#endif
|
||||
fsk->rx_bit = bit;
|
||||
if (fsk->rx_bitpos < 0.5) {
|
||||
fsk->rx_bitpos += fsk->rx_bitadjust;
|
||||
if (fsk->rx_bitpos > 0.5)
|
||||
fsk->rx_bitpos = 0.5;
|
||||
} else
|
||||
if (fsk->rx_bitpos > 0.5) {
|
||||
fsk->rx_bitpos -= fsk->rx_bitadjust;
|
||||
if (fsk->rx_bitpos < 0.5)
|
||||
fsk->rx_bitpos = 0.5;
|
||||
}
|
||||
}
|
||||
/* if bit counter reaches 1, we substract 1 and sample the bit */
|
||||
if (fsk->rx_bitpos >= 1.0) {
|
||||
/* peak level is the length of I/Q vector
|
||||
* since we filter out the unwanted modulation product, the vector is only half of length */
|
||||
level = sqrt(I[i] * I[i] + Q[i] * Q[i]) * 2.0;
|
||||
/* quality is defined on how accurat the target frequency it hit
|
||||
* if it is hit close to the center or close to double deviation from center, quality is close to 0 */
|
||||
if (bit == 0)
|
||||
quality = 1.0 - fabs((f - fsk->f0_deviation) / fsk->f0_deviation);
|
||||
else
|
||||
quality = 1.0 - fabs((f - fsk->f1_deviation) / fsk->f1_deviation);
|
||||
if (quality < 0)
|
||||
quality = 0;
|
||||
#ifdef DEBUG_FILTER
|
||||
printf("sample (level=%.3f, quality=%.3f)\n", level / fsk->level, quality);
|
||||
#endif
|
||||
/* adjust the values, because this is best we can get from fm demodulator */
|
||||
fsk->receive_bit(fsk->inst, bit, quality / 0.95, level);
|
||||
fsk->rx_bitpos -= 1.0;
|
||||
}
|
||||
fsk->rx_bitpos += fsk->bits_per_sample;
|
||||
}
|
||||
}
|
||||
|
||||
/* modulate bits
|
||||
*
|
||||
* If first/next bit is required, callback function send_bit() is called.
|
||||
* If there is no (more) data to be transmitted, the callback functions shall
|
||||
* return -1. In this case, this function stops and returns the number of
|
||||
* samples that have been rendered so far, if any.
|
||||
*
|
||||
* For coherent mode (FSK), we round the phase on every bit change to the
|
||||
* next zero crossing. This prevents phase shifts due to rounding errors.
|
||||
*/
|
||||
int fsk_send(fsk_t *fsk, sample_t *sample, int length, int add)
|
||||
{
|
||||
int count = 0;
|
||||
double phase, phaseshift;
|
||||
|
||||
phase = fsk->tx_phase65536;
|
||||
|
||||
/* get next bit */
|
||||
if (fsk->tx_bit < 0) {
|
||||
next_bit:
|
||||
fsk->tx_bit = fsk->send_bit(fsk->inst);
|
||||
#ifdef DEBUG_MODULATOR
|
||||
printf("bit change to %d\n", fsk->tx_bit);
|
||||
#endif
|
||||
if (fsk->tx_bit < 0)
|
||||
goto done;
|
||||
/* correct phase when changing bit */
|
||||
if (fsk->coherent) {
|
||||
/* round phase to nearest zero crossing */
|
||||
if (phase > 16384.0 && phase < 49152.0)
|
||||
phase = 32768.0;
|
||||
else
|
||||
phase = 0;
|
||||
/* set phase according to current position in bit */
|
||||
phase += fsk->tx_bitpos * fsk->cycles_per_bit65536[fsk->tx_bit & 1];
|
||||
#ifdef DEBUG_MODULATOR
|
||||
printf("phase %.3f bitpos=%.6f\n", phase, fsk->tx_bitpos);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/* modulate bit */
|
||||
phaseshift = fsk->phaseshift65536[fsk->tx_bit & 1];
|
||||
while (count < length && fsk->tx_bitpos < 1.0) {
|
||||
if (add)
|
||||
sample[count++] += fsk->sin_tab[(uint16_t)phase];
|
||||
else
|
||||
sample[count++] = fsk->sin_tab[(uint16_t)phase];
|
||||
#ifdef DEBUG_MODULATOR
|
||||
printf("|%s|\n", debug_amplitude(fsk->sin_tab[(uint16_t)phase] / fsk->level));
|
||||
#endif
|
||||
phase += phaseshift;
|
||||
if (phase >= 65536.0)
|
||||
phase -= 65536.0;
|
||||
fsk->tx_bitpos += fsk->bits_per_sample;
|
||||
}
|
||||
if (fsk->tx_bitpos >= 1.0) {
|
||||
fsk->tx_bitpos -= 1.0;
|
||||
goto next_bit;
|
||||
}
|
||||
|
||||
done:
|
||||
fsk->tx_phase65536 = phase;
|
||||
|
||||
iir_process(&fsk->tx_filter, sample, count);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
/* reset transmitter state, so we get a clean start */
|
||||
void fsk_tx_reset(fsk_t *fsk)
|
||||
{
|
||||
fsk->tx_phase65536 = 0;
|
||||
fsk->tx_bitpos = 0;
|
||||
fsk->tx_bit = -1;
|
||||
}
|
||||
|
||||
31
src/common/fsk.h
Normal file
31
src/common/fsk.h
Normal file
@@ -0,0 +1,31 @@
|
||||
#include "../common/fm_modulation.h"
|
||||
|
||||
typedef struct ffsk {
|
||||
void *inst;
|
||||
int (*send_bit)(void *inst);
|
||||
void (*receive_bit)(void *inst, int bit, double quality, double level);
|
||||
fm_demod_t demod;
|
||||
iir_filter_t tx_filter;
|
||||
double bits_per_sample; /* fraction of a bit per sample */
|
||||
double *sin_tab; /* sine table with correct peak level */
|
||||
double phaseshift65536[2]; /* how much the phase of fsk synbol changes per sample */
|
||||
double cycles_per_bit65536[2]; /* cacles of one bit */
|
||||
double tx_phase65536; /* current transmit phase */
|
||||
double level; /* level (amplitude) of signal */
|
||||
int coherent; /* set, if coherent TX mode */
|
||||
double f0_deviation; /* deviation of frequencies, relative to center */
|
||||
double f1_deviation;
|
||||
int low_bit, high_bit; /* a low or high deviation means which bit? */
|
||||
int tx_bit; /* current transmitting bit (-1 if not set) */
|
||||
int rx_bit; /* current receiving bit (-1 if not yet measured) */
|
||||
double tx_bitpos; /* current transmit position in bit */
|
||||
double rx_bitpos; /* current receive position in bit (sampleclock) */
|
||||
double rx_bitadjust; /* how much does a bit change cause the sample clock to be adjusted in phase */
|
||||
} fsk_t;
|
||||
|
||||
int fsk_init(fsk_t *fsk, void *inst, int (*send_bit)(void *inst), void (*receive_bit)(void *inst, int bit, double quality, double level), int samplerate, double bitrate, double f0, double f1, double level, int coherent, double bitadjust);
|
||||
void fsk_cleanup(fsk_t *fsk);
|
||||
void fsk_receive(fsk_t *fsk, sample_t *sample, int length);
|
||||
int fsk_send(fsk_t *fsk, sample_t *sample, int length, int add);
|
||||
void fsk_tx_reset(fsk_t *fsk);
|
||||
|
||||
@@ -26,7 +26,6 @@
|
||||
#include <pthread.h>
|
||||
#include <unistd.h>
|
||||
#include "sample.h"
|
||||
#include "iir_filter.h"
|
||||
#include "fm_modulation.h"
|
||||
#include "sender.h"
|
||||
#include "timer.h"
|
||||
@@ -229,13 +228,17 @@ void *sdr_open(const char __attribute__((__unused__)) *audiodev, double *tx_freq
|
||||
double tx_offset;
|
||||
tx_offset = sdr->chan[c].tx_frequency - tx_center_frequency;
|
||||
PDEBUG(DSDR, DEBUG_DEBUG, "Frequency #%d: TX offset: %.6f MHz\n", c, tx_offset / 1e6);
|
||||
fm_mod_init(&sdr->chan[c].mod, samplerate, tx_offset, sdr->amplitude);
|
||||
rc = fm_mod_init(&sdr->chan[c].mod, samplerate, tx_offset, sdr->amplitude);
|
||||
if (rc < 0)
|
||||
goto error;
|
||||
}
|
||||
if (sdr->paging_channel) {
|
||||
double tx_offset;
|
||||
tx_offset = sdr->chan[sdr->paging_channel].tx_frequency - tx_center_frequency;
|
||||
PDEBUG(DSDR, DEBUG_DEBUG, "Paging Frequency: TX offset: %.6f MHz\n", tx_offset / 1e6);
|
||||
fm_mod_init(&sdr->chan[sdr->paging_channel].mod, samplerate, tx_offset, sdr->amplitude);
|
||||
rc = fm_mod_init(&sdr->chan[sdr->paging_channel].mod, samplerate, tx_offset, sdr->amplitude);
|
||||
if (rc < 0)
|
||||
goto error;
|
||||
}
|
||||
/* show gain */
|
||||
PDEBUG(DSDR, DEBUG_INFO, "Using gain: TX %.1f dB\n", sdr_tx_gain);
|
||||
@@ -286,7 +289,9 @@ void *sdr_open(const char __attribute__((__unused__)) *audiodev, double *tx_freq
|
||||
double rx_offset;
|
||||
rx_offset = sdr->chan[c].rx_frequency - rx_center_frequency;
|
||||
PDEBUG(DSDR, DEBUG_DEBUG, "Frequency #%d: RX offset: %.6f MHz\n", c, rx_offset / 1e6);
|
||||
fm_demod_init(&sdr->chan[c].demod, samplerate, rx_offset, bandwidth);
|
||||
rc = fm_demod_init(&sdr->chan[c].demod, samplerate, rx_offset, bandwidth);
|
||||
if (rc < 0)
|
||||
goto error;
|
||||
}
|
||||
/* show gain */
|
||||
PDEBUG(DSDR, DEBUG_INFO, "Using gain: RX %.1f dB\n", sdr_rx_gain);
|
||||
@@ -513,7 +518,17 @@ void sdr_close(void *inst)
|
||||
wave_destroy_record(&sdr->wave_tx_rec);
|
||||
wave_destroy_playback(&sdr->wave_rx_play);
|
||||
wave_destroy_playback(&sdr->wave_tx_play);
|
||||
free(sdr->chan);
|
||||
if (sdr->chan) {
|
||||
int c;
|
||||
|
||||
for (c = 0; c < sdr->channels; c++) {
|
||||
fm_mod_exit(&sdr->chan[c].mod);
|
||||
fm_demod_exit(&sdr->chan[c].demod);
|
||||
}
|
||||
if (sdr->paging_channel)
|
||||
fm_mod_exit(&sdr->chan[sdr->paging_channel].mod);
|
||||
free(sdr->chan);
|
||||
}
|
||||
free(sdr);
|
||||
sdr = NULL;
|
||||
}
|
||||
@@ -538,9 +553,9 @@ int sdr_write(void *inst, sample_t **samples, int num, enum paging_signal __attr
|
||||
for (c = 0; c < channels; c++) {
|
||||
/* switch to paging channel, if requested */
|
||||
if (on[c] && sdr->paging_channel)
|
||||
fm_modulate(&sdr->chan[sdr->paging_channel].mod, samples[c], num, buff);
|
||||
fm_modulate_complex(&sdr->chan[sdr->paging_channel].mod, samples[c], num, buff);
|
||||
else
|
||||
fm_modulate(&sdr->chan[c].mod, samples[c], num, buff);
|
||||
fm_modulate_complex(&sdr->chan[c].mod, samples[c], num, buff);
|
||||
}
|
||||
} else {
|
||||
buff = (float *)samples;
|
||||
@@ -603,6 +618,7 @@ int sdr_read(void *inst, sample_t **samples, int num, int channels)
|
||||
{
|
||||
sdr_t *sdr = (sdr_t *)inst;
|
||||
float buffer[num * 2], *buff = NULL;
|
||||
sample_t I[num], Q[num];
|
||||
int count = 0;
|
||||
int c, s, ss;
|
||||
|
||||
@@ -675,7 +691,7 @@ int sdr_read(void *inst, sample_t **samples, int num, int channels)
|
||||
|
||||
if (channels) {
|
||||
for (c = 0; c < channels; c++)
|
||||
fm_demodulate(&sdr->chan[c].demod, samples[c], count, buff);
|
||||
fm_demodulate_complex(&sdr->chan[c].demod, samples[c], count, buff, I, Q);
|
||||
}
|
||||
|
||||
return count;
|
||||
|
||||
Reference in New Issue
Block a user