Restructure: Move sdr from common code to 'libsdr'

This commit is contained in:
Andreas Eversberg
2017-11-17 22:51:18 +01:00
parent 45a5568f70
commit 1650cc5ad2
29 changed files with 207 additions and 84 deletions

26
src/libsdr/Makefile.am Normal file
View File

@@ -0,0 +1,26 @@
AM_CPPFLAGS = -Wall -Wextra -g $(all_includes)
noinst_LIBRARIES = libsdr.a
libsdr_a_SOURCES = \
dd sdr_config.c \
sdr.c \
display_iq.c \
display_spectrum.c
AM_CPPFLAGS += -DHAVE_SDR
if HAVE_UHD
AM_CPPFLAGS += -DHAVE_UHD
libsdr_a_SOURCES += \
uhd.c
endif
if HAVE_SOAPY
AM_CPPFLAGS += -DHAVE_SOAPY
libsdr_a_SOURCES += \
soapy.c
endif

280
src/libsdr/display_iq.c Normal file
View File

@@ -0,0 +1,280 @@
/* display IQ data form functions
*
* (C) 2016 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <pthread.h>
#include <stdlib.h>
#include "../common/sample.h"
#include "../common/sender.h"
/* must be odd value! */
#define SIZE 23
static char screen[SIZE][MAX_DISPLAY_WIDTH];
static uint8_t screen_color[SIZE][MAX_DISPLAY_WIDTH];
static uint8_t screen_history[SIZE * 2][MAX_DISPLAY_WIDTH];
static int iq_on = 0;
static double db = 80;
static dispiq_t disp;
void display_iq_init(int samplerate)
{
memset(&disp, 0, sizeof(disp));
memset(&screen_history, 0, sizeof(screen_history));
disp.interval_max = (double)samplerate * DISPLAY_INTERVAL + 0.5;
/* should not happen due to low interval */
if (disp.interval_max < MAX_DISPLAY_IQ - 1)
disp.interval_max = MAX_DISPLAY_IQ - 1;
}
void display_iq_on(int on)
{
int j;
int w, h;
get_win_size(&w, &h);
if (iq_on) {
memset(&screen, ' ', sizeof(screen));
memset(&screen_history, 0, sizeof(screen_history));
printf("\0337\033[H");
for (j = 0; j < SIZE; j++) {
screen[j][w] = '\0';
puts(screen[j]);
}
printf("\0338"); fflush(stdout);
}
if (on < 0) {
if (++iq_on == 3)
iq_on = 0;
} else
iq_on = on;
}
void display_iq_limit_scroll(int on)
{
int w, h;
if (!iq_on)
return;
get_win_size(&w, &h);
printf("\0337");
printf("\033[%d;%dr", (on) ? SIZE + 1 : 1, h);
printf("\0338");
}
/*
* plot IQ data:
*
* theoretical example: SIZE = 3 allows 6 steps plotted as dots
*
* Line 0: :
* Line 1: :
* Line 2: :
*
* The level of -1.0 .. 1.0 is scaled to -3 and 3.
*
* The lowest of the upper 3 dots ranges from 0.0 .. <1.5.
* The upper most dot ranges from 2.5 .. <3.5.
* The highest of the lower 3 dots ranges from <0.0 .. >-1.5;
* The lower most dot ranges from -2.5 .. >-3.5.
*
* The center column ranges from -0.5 .. <0.5.
* The columns about the center from -1.5 .. <1.5.
*/
void display_iq(float *samples, int length)
{
int pos, max;
float *buffer;
int i, j, k;
int color = 9; /* default color */
int x_center, y_center;
double I, Q, L, l, s;
int x, y;
int v, r;
int width, h;
if (!iq_on)
return;
get_win_size(&width, &h);
/* at what line we draw our zero-line and what character we use */
x_center = width >> 1;
y_center = (SIZE - 1) >> 1;
pos = disp.interval_pos;
max = disp.interval_max;
buffer = disp.buffer;
for (i = 0; i < length; i++) {
if (pos >= MAX_DISPLAY_IQ) {
if (++pos == max)
pos = 0;
continue;
}
buffer[pos * 2] = samples[i * 2];
buffer[pos * 2 + 1] = samples[i * 2 + 1];
pos++;
if (pos == MAX_DISPLAY_IQ) {
memset(&screen, ' ', sizeof(screen));
memset(&screen_color, 7, sizeof(screen_color));
/* render screen history to screen */
for (y = 0; y < SIZE * 2; y++) {
for (x = 0; x < width; x++) {
v = screen_history[y][x];
v -= 8;
if (v < 0)
v = 0;
screen_history[y][x] = v;
r = random() & 0x3f;
if (r >= v)
continue;
if (screen[y/2][x] == ':')
continue;
if (screen[y/2][x] == '.') {
if ((y & 1) == 0)
screen[y/2][x] = ':';
continue;
}
if (screen[y/2][x] == '\'') {
if ((y & 1))
screen[y/2][x] = ':';
continue;
}
if ((y & 1) == 0)
screen[y/2][x] = '\'';
else
screen[y/2][x] = '.';
screen_color[y/2][x] = 4;
}
}
/* plot current IQ date */
for (j = 0; j < MAX_DISPLAY_IQ; j++) {
I = buffer[j * 2];
Q = buffer[j * 2 + 1];
L = I*I + Q*Q;
if (iq_on > 1) {
/* logarithmic scale */
l = sqrt(L);
s = log10(l) * 20 + db;
if (s < 0)
s = 0;
I = (I / l) * (s / db);
Q = (Q / l) * (s / db);
}
x = x_center + (int)(I * (double)SIZE + (double)width + 0.5) - width;
if (x < 0)
continue;
if (x > width - 1)
continue;
if (Q >= 0)
y = SIZE - 1 - (int)(Q * (double)SIZE - 0.5);
else
y = SIZE - (int)(Q * (double)SIZE + 0.5);
if (y < 0)
continue;
if (y > SIZE * 2 - 1)
continue;
if (screen[y/2][x] == ':' && screen_color[y/2][x] >= 10)
goto cont;
if (screen[y/2][x] == '.' && screen_color[y/2][x] >= 10) {
if ((y & 1) == 0)
screen[y/2][x] = ':';
goto cont;
}
if (screen[y/2][x] == '\'' && screen_color[y/2][x] >= 10) {
if ((y & 1))
screen[y/2][x] = ':';
goto cont;
}
if ((y & 1) == 0)
screen[y/2][x] = '\'';
else
screen[y/2][x] = '.';
cont:
screen_history[y][x] = 255;
/* overdrive:
* red = close to -1..1 or above
* yellow = close to -0.5..0.5 or above
* Note: L is square of vector length,
* so we compare with square values.
*/
if (L > 0.9 * 0.9)
screen_color[y/2][x] = 11;
else if (L > 0.45 * 0.45 && screen_color[y/2][x] != 11)
screen_color[y/2][x] = 13;
else if (screen_color[y/2][x] < 10)
screen_color[y/2][x] = 12;
}
if (iq_on == 1)
sprintf(screen[0], "(IQ linear");
else
sprintf(screen[0], "(IQ log %.0f dB", db);
*strchr(screen[0], '\0') = ')';
printf("\0337\033[H");
for (j = 0; j < SIZE; j++) {
for (k = 0; k < width; k++) {
if ((j == y_center || k == x_center) && screen[j][k] == ' ') {
/* cross */
if (color != 4) {
color = 4;
printf("\033[0;34m");
}
if (j == y_center) {
if (k == x_center)
putchar('o');
else if (k == x_center - SIZE)
putchar('+');
else if (k == x_center + SIZE)
putchar('+');
else
putchar('-');
} else {
if (j == 0 || j == SIZE - 1)
putchar('+');
else
putchar('|');
}
} else {
if (screen_color[j][k] != color) {
color = screen_color[j][k];
printf("\033[%d;3%dm", color / 10, color % 10);
}
putchar(screen[j][k]);
}
}
printf("\n");
}
/* reset color and position */
printf("\033[0;39m\0338"); fflush(stdout);
}
}
disp.interval_pos = pos;
}

View File

@@ -0,0 +1,292 @@
/* display spectrum of IQ data
*
* (C) 2016 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "../common/sample.h"
#include "../common/sender.h"
#include "../libfft/fft.h"
#define HEIGHT 20
static double buffer_max[MAX_DISPLAY_SPECTRUM];
static char screen[HEIGHT][MAX_DISPLAY_WIDTH];
static uint8_t screen_color[HEIGHT][MAX_DISPLAY_WIDTH];
static int spectrum_on = 0;
static double db = 120;
static double center_frequency, frequency_range;
static dispspectrum_t disp;
void display_spectrum_init(int samplerate, double _center_frequency)
{
memset(&disp, 0, sizeof(disp));
disp.interval_max = (double)samplerate * DISPLAY_INTERVAL + 0.5;
/* should not happen due to low interval */
if (disp.interval_max < MAX_DISPLAY_SPECTRUM - 1)
disp.interval_max = MAX_DISPLAY_SPECTRUM - 1;
memset(buffer_max, 0, sizeof(buffer_max));
center_frequency = _center_frequency;
frequency_range = (double)samplerate;
}
void display_spectrum_on(int on)
{
int j;
int w, h;
get_win_size(&w, &h);
if (spectrum_on) {
memset(&screen, ' ', sizeof(screen));
printf("\0337\033[H");
for (j = 0; j < HEIGHT; j++) {
screen[j][w] = '\0';
puts(screen[j]);
}
printf("\0338"); fflush(stdout);
}
if (on < 0) {
if (++spectrum_on == 2)
spectrum_on = 0;
} else
spectrum_on = on;
}
void display_spectrum_limit_scroll(int on)
{
int w, h;
if (!spectrum_on)
return;
get_win_size(&w, &h);
printf("\0337");
printf("\033[%d;%dr", (on) ? HEIGHT + 1 : 1, h);
printf("\0338");
}
/*
* plot spectrum data:
*
*/
void display_spectrum(float *samples, int length)
{
sender_t *sender;
char print_channel[32], print_frequency[32];
int width, h;
int pos, max;
double *buffer_I, *buffer_Q;
int color = 9; /* default color */
int i, j, k, o;
double I, Q, v;
int s, e, l, n;
if (!spectrum_on)
return;
get_win_size(&width, &h);
if (width > MAX_DISPLAY_WIDTH)
width = MAX_DISPLAY_WIDTH;
/* calculate size of FFT */
int m, fft_size = 0, fft_taps = 0;
for (m = 0; m < 16; m++) {
if ((1 << m) > MAX_DISPLAY_SPECTRUM)
break;
if ((1 << m) <= width) {
fft_taps = m;
fft_size = 1 << m;
}
}
if (m == 16) {
fprintf(stderr, "Size of spectrum is not a power of 2, please fix!\n");
abort();
}
int heigh[fft_size], low[fft_size];
pos = disp.interval_pos;
max = disp.interval_max;
buffer_I = disp.buffer_I;
buffer_Q = disp.buffer_Q;
for (i = 0; i < length; i++) {
if (pos >= fft_size) {
if (++pos == max)
pos = 0;
continue;
}
buffer_I[pos] = samples[i * 2];
buffer_Q[pos] = samples[i * 2 + 1];
pos++;
if (pos == fft_size) {
fft_process(1, fft_taps, buffer_I, buffer_Q);
k = 0;
for (j = 0; j < fft_size; j++) {
/* scale result vertically */
I = buffer_I[(j + fft_size / 2) % fft_size];
Q = buffer_Q[(j + fft_size / 2) % fft_size];
v = sqrt(I*I + Q*Q);
v = log10(v) * 20 + db;
if (v < 0)
v = 0;
v /= db;
buffer_max[j] -= DISPLAY_INTERVAL / 10.0;
if (v > buffer_max[j])
buffer_max[j] = v;
/* heigh is the maximum value */
heigh[j] = (double)(HEIGHT * 2 - 1) * (1.0 - buffer_max[j]);
if (heigh[j] < 0)
heigh[j] = 0;
if (heigh[j] >= (HEIGHT * 2))
heigh[j] = (HEIGHT * 2) - 1;
/* low is the current value */
low[j] = (double)(HEIGHT * 2 - 1) * (1.0 - v);
if (low[j] < 0)
low[j] = 0;
if (low[j] >= (HEIGHT * 2))
low[j] = (HEIGHT * 2) - 1;
}
/* plot scaled buffer */
memset(&screen, ' ', sizeof(screen));
memset(&screen_color, 7, sizeof(screen_color)); /* all white */
sprintf(screen[0], "(spectrum log %.0f dB", db);
*strchr(screen[0], '\0') = ')';
o = (width - fft_size) / 2; /* offset from left border */
for (j = 0; j < fft_size; j++) {
s = l = n = low[j];
/* get last and next value */
if (j > 0)
l = (low[j - 1] + s) / 2;
if (j < fft_size - 1)
n = (low[j + 1] + s) / 2;
if (s > l && s > n) {
/* current value is a minimum */
e = s;
s = (l < n) ? (l + 1) : (n + 1);
} else if (s < l && s < n) {
/* current value is a maximum */
e = (l > n) ? l : n;
} else if (l < n) {
/* last value is higher, next value is lower */
s = l + 1;
e = n;
} else if (l > n) {
/* last value is lower, next value is higher */
s = n + 1;
e = l;
} else {
/* current, last and next values are equal */
e = s;
}
if (s == e) {
if ((s & 1) == 0)
screen[s >> 1][j + o] = '\'';
else
screen[s >> 1][j + o] = '.';
screen_color[s >> 1][j + o] = 13;
} else {
if ((s & 1) == 0)
screen[s >> 1][j + o] = '|';
else
screen[s >> 1][j + o] = '.';
screen_color[s >> 1][j + o] = 13;
if ((e & 1) == 0)
screen[e >> 1][j + o] = '\'';
else
screen[e >> 1][j + o] = '|';
screen_color[e >> 1][j + o] = 13;
for (k = (s >> 1) + 1; k < (e >> 1); k++) {
screen[k][j + o] = '|';
screen_color[k][j + o] = 13;
}
}
e = s;
s = heigh[j];
if ((s >> 1) < (e >> 1)) {
if ((s & 1) == 0)
screen[s >> 1][j + o] = '|';
else
screen[s >> 1][j + o] = '.';
screen_color[s >> 1][j + o] = 4;
for (k = (s >> 1) + 1; k < (e >> 1); k++) {
screen[k][j + o] = '|';
screen_color[k][j + o] = 4;
}
}
}
for (sender = sender_head; sender; sender = sender->next) {
j = (int)((sender->empfangsfrequenz - center_frequency) / frequency_range * (double) fft_size + width / 2 + 0.5);
if (j < 0 || j >= width) /* check out-of-range, should not happen */
continue;
for (k = 0; k < HEIGHT; k++) {
/* skip yellow graph */
if (screen_color[k][j] == 13)
continue;
screen[k][j] = ':';
screen_color[k][j] = 12;
}
sprintf(print_channel, "Ch%d", sender->kanal);
for (o = 0; o < (int)strlen(print_channel); o++) {
s = j - strlen(print_channel) + o;
if (s >= 0 && s < width) {
screen[HEIGHT - 1][s] = print_channel[o];
screen_color[HEIGHT - 1][s] = 7;
}
}
if (fmod(sender->empfangsfrequenz, 1000.0))
sprintf(print_frequency, "%.4f", sender->empfangsfrequenz / 1e6);
else
sprintf(print_frequency, "%.3f", sender->empfangsfrequenz / 1e6);
for (o = 0; o < (int)strlen(print_frequency); o++) {
s = j + o + 1;
if (s >= 0 && s < width) {
screen[HEIGHT - 1][s] = print_frequency[o];
screen_color[HEIGHT - 1][s] = 7;
}
}
}
printf("\0337\033[H");
for (j = 0; j < HEIGHT; j++) {
for (k = 0; k < width; k++) {
if (screen_color[j][k] != color) {
color = screen_color[j][k];
printf("\033[%d;3%dm", color / 10, color % 10);
}
putchar(screen[j][k]);
}
printf("\n");
}
/* reset color and position */
printf("\033[0;39m\0338"); fflush(stdout);
}
}
disp.interval_pos = pos;
}

865
src/libsdr/sdr.c Normal file
View File

@@ -0,0 +1,865 @@
/* SDR processing
*
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
enum paging_signal;
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <getopt.h>
#define __USE_GNU
#include <pthread.h>
#include <unistd.h>
#include "../common/sample.h"
#include "../libfm/fm.h"
#include "../libtimer/timer.h"
#include "../common/sender.h"
#include "sdr_config.h"
#include "sdr.h"
#ifdef HAVE_UHD
#include "uhd.h"
#endif
#ifdef HAVE_SOAPY
#include "soapy.h"
#endif
#include "../common/debug.h"
/* enable to debug buffer handling */
//#define DEBUG_BUFFER
/* enable to test without oversampling filter */
//#define DISABLE_FILTER
/* usable bandwidth of IQ rate, because no filter is perfect */
#define USABLE_BANDWIDTH 0.75
int sdr_rx_overflow = 0;
typedef struct sdr_thread {
int use;
volatile int running, exit; /* flags to control exit of threads */
int buffer_size;
volatile float *buffer;
float *buffer2;
volatile int in, out; /* in and out pointers (atomic, so no locking required) */
int max_fill; /* measure maximum buffer fill */
double max_fill_timer; /* timer to display/reset maximum fill */
iir_filter_t lp[2]; /* filter for upsample/downsample IQ data */
} sdr_thread_t;
typedef struct sdr_chan {
double tx_frequency; /* frequency used */
double rx_frequency; /* frequency used */
fm_mod_t mod; /* modulator instance */
fm_demod_t demod; /* demodulator instance */
dispmeasparam_t *dmp_rf_level;
dispmeasparam_t *dmp_freq_offset;
dispmeasparam_t *dmp_deviation;
} sdr_chan_t;
typedef struct sdr {
int threads; /* use threads */
int oversample; /* oversample IQ rate */
sdr_thread_t thread_read,
thread_write;
sdr_chan_t *chan; /* settings for all channels */
int paging_channel; /* if set, points to paging channel */
sdr_chan_t paging_chan; /* settings for extra paging channel */
int channels; /* number of frequencies */
double amplitude; /* amplitude of each carrier */
int samplerate; /* sample rate of audio data */
int latspl; /* latency in audio samples */
wave_rec_t wave_rx_rec;
wave_rec_t wave_tx_rec;
wave_play_t wave_rx_play;
wave_play_t wave_tx_play;
float *modbuff; /* buffer for FM transmodulation */
sample_t *modbuff_I;
sample_t *modbuff_Q;
sample_t *wavespl0; /* sample buffer for wave generation */
sample_t *wavespl1;
} sdr_t;
void *sdr_open(const char __attribute__((__unused__)) *audiodev, double *tx_frequency, double *rx_frequency, int channels, double paging_frequency, int samplerate, int latspl, double max_deviation, double max_modulation)
{
sdr_t *sdr;
int threads = 1, oversample = 1; /* always use threads */
double bandwidth;
double tx_center_frequency = 0.0, rx_center_frequency = 0.0;
int rc;
int c;
PDEBUG(DSDR, DEBUG_DEBUG, "Open SDR device\n");
if (sdr_config->samplerate != samplerate) {
if (samplerate > sdr_config->samplerate) {
PDEBUG(DSDR, DEBUG_ERROR, "SDR sample rate must be greater than audio sample rate!\n");
PDEBUG(DSDR, DEBUG_ERROR, "You selected an SDR rate of %d and an audio rate of %d.\n", sdr_config->samplerate, samplerate);
return NULL;
}
if ((sdr_config->samplerate % samplerate)) {
PDEBUG(DSDR, DEBUG_ERROR, "SDR sample rate must be a multiple of audio sample rate!\n");
PDEBUG(DSDR, DEBUG_ERROR, "You selected an SDR rate of %d and an audio rate of %d.\n", sdr_config->samplerate, samplerate);
return NULL;
}
oversample = sdr_config->samplerate / samplerate;
threads = 1;
}
bandwidth = 2.0 * (max_deviation + max_modulation);
PDEBUG(DSDR, DEBUG_INFO, "Require bandwidth of each channel is 2 * (%.1f deviation + %.1f modulation) = %.1f KHz\n", max_deviation / 1e3, max_modulation / 1e3, bandwidth / 1e3);
if (channels < 1) {
PDEBUG(DSDR, DEBUG_ERROR, "No channel given, please fix!\n");
abort();
}
sdr = calloc(sizeof(*sdr), 1);
if (!sdr) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
sdr->channels = channels;
sdr->amplitude = 1.0 / (double)channels;
sdr->samplerate = samplerate;
sdr->latspl = latspl;
sdr->threads = threads; /* always requried, because write may block */
sdr->oversample = oversample;
if (threads) {
memset(&sdr->thread_read, 0, sizeof(sdr->thread_read));
sdr->thread_read.buffer_size = sdr->latspl * 2 * sdr->oversample + 2;
sdr->thread_read.buffer = calloc(sdr->thread_read.buffer_size, sizeof(*sdr->thread_read.buffer));
if (!sdr->thread_read.buffer) {
PDEBUG(DSDR, DEBUG_ERROR, "No mem!\n");
goto error;
}
sdr->thread_read.buffer2 = calloc(sdr->thread_read.buffer_size, sizeof(*sdr->thread_read.buffer2));
if (!sdr->thread_read.buffer2) {
PDEBUG(DSDR, DEBUG_ERROR, "No mem!\n");
goto error;
}
sdr->thread_read.in = sdr->thread_read.out = 0;
if (oversample > 1) {
iir_lowpass_init(&sdr->thread_read.lp[0], samplerate / 2.0, sdr_config->samplerate, 2);
iir_lowpass_init(&sdr->thread_read.lp[1], samplerate / 2.0, sdr_config->samplerate, 2);
}
memset(&sdr->thread_write, 0, sizeof(sdr->thread_write));
sdr->thread_write.buffer_size = sdr->latspl * 2 + 2;
sdr->thread_write.buffer = calloc(sdr->thread_write.buffer_size, sizeof(*sdr->thread_write.buffer));
if (!sdr->thread_write.buffer) {
PDEBUG(DSDR, DEBUG_ERROR, "No mem!\n");
goto error;
}
sdr->thread_write.buffer2 = calloc(sdr->thread_write.buffer_size * sdr->oversample, sizeof(*sdr->thread_write.buffer2));
if (!sdr->thread_write.buffer2) {
PDEBUG(DSDR, DEBUG_ERROR, "No mem!\n");
goto error;
}
sdr->thread_write.in = sdr->thread_write.out = 0;
if (oversample > 1) {
iir_lowpass_init(&sdr->thread_write.lp[0], samplerate / 2.0, sdr_config->samplerate, 2);
iir_lowpass_init(&sdr->thread_write.lp[1], samplerate / 2.0, sdr_config->samplerate, 2);
}
}
/* alloc fm modulation buffers */
sdr->modbuff = calloc(sdr->latspl * 2, sizeof(*sdr->modbuff));
if (!sdr->modbuff) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
sdr->modbuff_I = calloc(sdr->latspl, sizeof(*sdr->modbuff_I));
if (!sdr->modbuff_I) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
sdr->modbuff_Q = calloc(sdr->latspl, sizeof(*sdr->modbuff_Q));
if (!sdr->modbuff_Q) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
sdr->wavespl0 = calloc(sdr->latspl, sizeof(*sdr->wavespl0));
if (!sdr->wavespl0) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
sdr->wavespl1 = calloc(sdr->latspl, sizeof(*sdr->wavespl1));
if (!sdr->wavespl1) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
/* special case where we use a paging frequency */
if (paging_frequency) {
/* add extra paging channel */
sdr->paging_channel = channels;
}
/* create list of channel states */
sdr->chan = calloc(sizeof(*sdr->chan), channels + (sdr->paging_channel != 0));
if (!sdr->chan) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
if (tx_frequency) {
/* calculate required bandwidth (IQ rate) */
for (c = 0; c < channels; c++) {
PDEBUG(DSDR, DEBUG_INFO, "Frequency #%d: TX = %.6f MHz\n", c, tx_frequency[c] / 1e6);
sdr->chan[c].tx_frequency = tx_frequency[c];
}
if (sdr->paging_channel) {
PDEBUG(DSDR, DEBUG_INFO, "Paging Frequency: TX = %.6f MHz\n", paging_frequency / 1e6);
sdr->chan[sdr->paging_channel].tx_frequency = paging_frequency;
}
double tx_low_frequency = sdr->chan[0].tx_frequency, tx_high_frequency = sdr->chan[0].tx_frequency;
for (c = 1; c < channels; c++) {
if (sdr->chan[c].tx_frequency < tx_low_frequency)
tx_low_frequency = sdr->chan[c].tx_frequency;
if (sdr->chan[c].tx_frequency > tx_high_frequency)
tx_high_frequency = sdr->chan[c].tx_frequency;
}
if (sdr->paging_channel) {
if (sdr->chan[sdr->paging_channel].tx_frequency < tx_low_frequency)
tx_low_frequency = sdr->chan[sdr->paging_channel].tx_frequency;
if (sdr->chan[sdr->paging_channel].tx_frequency > tx_high_frequency)
tx_high_frequency = sdr->chan[sdr->paging_channel].tx_frequency;
}
/* range of TX */
double range = tx_high_frequency - tx_low_frequency + bandwidth;
PDEBUG(DSDR, DEBUG_INFO, "Total bandwidth for all TX Frequencies: %.0f Hz\n", range);
if (range > samplerate * USABLE_BANDWIDTH) {
PDEBUG(DSDR, DEBUG_NOTICE, "*******************************************************************************\n");
PDEBUG(DSDR, DEBUG_NOTICE, "The required bandwidth of %.0f Hz exceeds %.0f%% of the sample rate.\n", range, USABLE_BANDWIDTH * 100.0);
PDEBUG(DSDR, DEBUG_NOTICE, "Please increase samplerate!\n");
PDEBUG(DSDR, DEBUG_NOTICE, "*******************************************************************************\n");
goto error;
}
tx_center_frequency = (tx_high_frequency + tx_low_frequency) / 2.0;
PDEBUG(DSDR, DEBUG_INFO, "Using center frequency: TX %.6f MHz\n", tx_center_frequency / 1e6);
/* set offsets to center frequency */
for (c = 0; c < channels; c++) {
double tx_offset;
tx_offset = sdr->chan[c].tx_frequency - tx_center_frequency;
PDEBUG(DSDR, DEBUG_DEBUG, "Frequency #%d: TX offset: %.6f MHz\n", c, tx_offset / 1e6);
rc = fm_mod_init(&sdr->chan[c].mod, samplerate, tx_offset, sdr->amplitude);
if (rc < 0)
goto error;
}
if (sdr->paging_channel) {
double tx_offset;
tx_offset = sdr->chan[sdr->paging_channel].tx_frequency - tx_center_frequency;
PDEBUG(DSDR, DEBUG_DEBUG, "Paging Frequency: TX offset: %.6f MHz\n", tx_offset / 1e6);
rc = fm_mod_init(&sdr->chan[sdr->paging_channel].mod, samplerate, tx_offset, sdr->amplitude);
if (rc < 0)
goto error;
}
/* show gain */
PDEBUG(DSDR, DEBUG_INFO, "Using gain: TX %.1f dB\n", sdr_config->tx_gain);
/* open wave */
if (sdr_config->write_iq_tx_wave) {
rc = wave_create_record(&sdr->wave_tx_rec, sdr_config->write_iq_tx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE recoding instance!\n");
goto error;
}
}
if (sdr_config->read_iq_tx_wave) {
rc = wave_create_playback(&sdr->wave_tx_play, sdr_config->read_iq_tx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE playback instance!\n");
goto error;
}
}
}
if (rx_frequency) {
for (c = 0; c < channels; c++) {
PDEBUG(DSDR, DEBUG_INFO, "Frequency #%d: RX = %.6f MHz\n", c, rx_frequency[c] / 1e6);
sdr->chan[c].rx_frequency = rx_frequency[c];
}
/* calculate required bandwidth (IQ rate) */
double rx_low_frequency = sdr->chan[0].rx_frequency, rx_high_frequency = sdr->chan[0].rx_frequency;
for (c = 1; c < channels; c++) {
if (sdr->chan[c].rx_frequency < rx_low_frequency)
rx_low_frequency = sdr->chan[c].rx_frequency;
if (sdr->chan[c].rx_frequency > rx_high_frequency)
rx_high_frequency = sdr->chan[c].rx_frequency;
}
/* range of RX */
double range = rx_high_frequency - rx_low_frequency + bandwidth;
PDEBUG(DSDR, DEBUG_INFO, "Total bandwidth for all RX Frequencies: %.0f Hz\n", range);
if (range > samplerate * USABLE_BANDWIDTH) {
PDEBUG(DSDR, DEBUG_NOTICE, "*******************************************************************************\n");
PDEBUG(DSDR, DEBUG_NOTICE, "The required bandwidth of %.0f Hz exceeds %.0f%% of the sample rate.\n", range, USABLE_BANDWIDTH * 100.0);
PDEBUG(DSDR, DEBUG_NOTICE, "Please increase samplerate!\n");
PDEBUG(DSDR, DEBUG_NOTICE, "*******************************************************************************\n");
goto error;
}
rx_center_frequency = (rx_high_frequency + rx_low_frequency) / 2.0;
PDEBUG(DSDR, DEBUG_INFO, "Using center frequency: RX %.6f MHz\n", rx_center_frequency / 1e6);
/* set offsets to center frequency */
for (c = 0; c < channels; c++) {
double rx_offset;
rx_offset = sdr->chan[c].rx_frequency - rx_center_frequency;
PDEBUG(DSDR, DEBUG_DEBUG, "Frequency #%d: RX offset: %.6f MHz\n", c, rx_offset / 1e6);
rc = fm_demod_init(&sdr->chan[c].demod, samplerate, rx_offset, bandwidth);
if (rc < 0)
goto error;
}
/* show gain */
PDEBUG(DSDR, DEBUG_INFO, "Using gain: RX %.1f dB\n", sdr_config->rx_gain);
/* open wave */
if (sdr_config->write_iq_rx_wave) {
rc = wave_create_record(&sdr->wave_rx_rec, sdr_config->write_iq_rx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE recoding instance!\n");
goto error;
}
}
if (sdr_config->read_iq_rx_wave) {
rc = wave_create_playback(&sdr->wave_rx_play, sdr_config->read_iq_rx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE playback instance!\n");
goto error;
}
}
/* init measurements display */
for (c = 0; c < channels; c++) {
sender_t *sender = get_sender_by_empfangsfrequenz(sdr->chan[c].rx_frequency);
if (!sender)
continue;
sdr->chan[c].dmp_rf_level = display_measurements_add(sender, "RF Level", "%.1f dB", DISPLAY_MEAS_AVG, DISPLAY_MEAS_LEFT, -96.0, 0.0, -INFINITY);
sdr->chan[c].dmp_freq_offset = display_measurements_add(sender, "Freq. Offset", "%+.2f KHz", DISPLAY_MEAS_AVG, DISPLAY_MEAS_CENTER, -max_deviation / 1000.0 * 2.0, max_deviation / 1000.0 * 2.0, 0.0);
sdr->chan[c].dmp_deviation = display_measurements_add(sender, "Deviation", "%.2f KHz", DISPLAY_MEAS_PEAK2PEAK, DISPLAY_MEAS_LEFT, 0.0, max_deviation / 1000.0 * 1.5, max_deviation / 1000.0);
}
}
if (sdr_config->swap_links) {
double temp;
PDEBUG(DSDR, DEBUG_NOTICE, "Sapping RX and TX frequencies!\n");
temp = rx_center_frequency;
rx_center_frequency = tx_center_frequency;
tx_center_frequency = temp;
}
display_iq_init(samplerate);
display_spectrum_init(samplerate, rx_center_frequency);
#ifdef HAVE_UHD
if (sdr_config->uhd) {
rc = uhd_open(sdr_config->channel, sdr_config->device_args, sdr_config->stream_args, sdr_config->tune_args, sdr_config->tx_antenna, sdr_config->rx_antenna, tx_center_frequency, rx_center_frequency, sdr_config->samplerate, sdr_config->tx_gain, sdr_config->rx_gain, sdr_config->bandwidth, sdr_config->uhd_tx_timestamps);
if (rc)
goto error;
}
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy) {
rc = soapy_open(sdr_config->channel, sdr_config->device_args, sdr_config->stream_args, sdr_config->tune_args, sdr_config->tx_antenna, sdr_config->rx_antenna, tx_center_frequency, rx_center_frequency, sdr_config->samplerate, sdr_config->tx_gain, sdr_config->rx_gain, sdr_config->bandwidth);
if (rc)
goto error;
}
#endif
return sdr;
error:
sdr_close(sdr);
return NULL;
}
static void *sdr_write_child(void *arg)
{
sdr_t *sdr = (sdr_t *)arg;
int num;
int fill, out;
int s, ss, o;
while (sdr->thread_write.running) {
/* write to SDR */
fill = (sdr->thread_write.in - sdr->thread_write.out + sdr->thread_write.buffer_size) % sdr->thread_write.buffer_size;
num = fill / 2;
if (num) {
#ifdef DEBUG_BUFFER
printf("Thread found %d samples in write buffer and forwards them to SDR.\n", num);
#endif
out = sdr->thread_write.out;
for (s = 0, ss = 0; s < num; s++) {
for (o = 0; o < sdr->oversample; o++) {
sdr->thread_write.buffer2[ss++] = sdr->thread_write.buffer[out];
sdr->thread_write.buffer2[ss++] = sdr->thread_write.buffer[out + 1];
}
out = (out + 2) % sdr->thread_write.buffer_size;
}
sdr->thread_write.out = out;
#ifndef DISABLE_FILTER
/* filter spectrum */
if (sdr->oversample > 1) {
iir_process_baseband(&sdr->thread_write.lp[0], sdr->thread_write.buffer2, num * sdr->oversample);
iir_process_baseband(&sdr->thread_write.lp[1], sdr->thread_write.buffer2 + 1, num * sdr->oversample);
}
#endif
#ifdef HAVE_UHD
if (sdr_config->uhd)
uhd_send(sdr->thread_write.buffer2, num * sdr->oversample);
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy)
soapy_send(sdr->thread_write.buffer2, num * sdr->oversample);
#endif
}
/* delay some time */
usleep(1000);
}
PDEBUG(DSDR, DEBUG_DEBUG, "Thread received exit!\n");
sdr->thread_write.exit = 1;
return NULL;
}
static void *sdr_read_child(void *arg)
{
sdr_t *sdr = (sdr_t *)arg;
int num, count = 0;
int space, in;
int s, ss;
while (sdr->thread_read.running) {
/* read from SDR */
space = (sdr->thread_read.out - sdr->thread_read.in - 2 + sdr->thread_read.buffer_size) % sdr->thread_read.buffer_size;
num = space / 2;
if (num) {
#ifdef HAVE_UHD
if (sdr_config->uhd)
count = uhd_receive(sdr->thread_read.buffer2, num);
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy)
count = soapy_receive(sdr->thread_read.buffer2, num);
#endif
if (count > 0) {
#ifdef DEBUG_BUFFER
printf("Thread read %d samples from SDR and writes them to read buffer.\n", count);
#endif
#ifndef DISABLE_FILTER
/* filter spectrum */
if (sdr->oversample > 1) {
iir_process_baseband(&sdr->thread_read.lp[0], sdr->thread_read.buffer2, count);
iir_process_baseband(&sdr->thread_read.lp[1], sdr->thread_read.buffer2 + 1, count);
}
#endif
in = sdr->thread_read.in;
for (s = 0, ss = 0; s < count; s++) {
sdr->thread_read.buffer[in++] = sdr->thread_read.buffer2[ss++];
sdr->thread_read.buffer[in++] = sdr->thread_read.buffer2[ss++];
in %= sdr->thread_read.buffer_size;
}
sdr->thread_read.in = in;
}
}
/* delay some time */
usleep(1000);
}
PDEBUG(DSDR, DEBUG_DEBUG, "Thread received exit!\n");
sdr->thread_read.exit = 1;
return NULL;
}
/* start streaming */
int sdr_start(void *inst)
{
sdr_t *sdr = (sdr_t *)inst;
int rc = -EINVAL;
#ifdef HAVE_UHD
if (sdr_config->uhd)
rc = uhd_start();
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy)
rc = soapy_start();
#endif
if (rc < 0)
return rc;
if (sdr->threads) {
int rc;
pthread_t tid;
char tname[64];
PDEBUG(DSDR, DEBUG_DEBUG, "Create threads!\n");
sdr->thread_write.running = 1;
sdr->thread_write.exit = 0;
rc = pthread_create(&tid, NULL, sdr_write_child, inst);
if (rc < 0) {
sdr->thread_write.running = 0;
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create thread!\n");
return rc;
}
pthread_getname_np(tid, tname, sizeof(tname));
strncat(tname, "-sdr_tx", sizeof(tname));
tname[sizeof(tname) - 1] = '\0';
pthread_setname_np(tid, tname);
sdr->thread_read.running = 1;
sdr->thread_read.exit = 0;
rc = pthread_create(&tid, NULL, sdr_read_child, inst);
if (rc < 0) {
sdr->thread_read.running = 0;
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create thread!\n");
return rc;
}
pthread_getname_np(tid, tname, sizeof(tname));
strncat(tname, "-sdr_rx", sizeof(tname));
tname[sizeof(tname) - 1] = '\0';
pthread_setname_np(tid, tname);
}
return 0;
}
void sdr_close(void *inst)
{
sdr_t *sdr = (sdr_t *)inst;
PDEBUG(DSDR, DEBUG_DEBUG, "Close SDR device\n");
if (sdr->threads) {
if (sdr->thread_write.running) {
PDEBUG(DSDR, DEBUG_DEBUG, "Thread sending exit!\n");
sdr->thread_write.running = 0;
while (sdr->thread_write.exit == 0)
usleep(1000);
}
if (sdr->thread_read.running) {
PDEBUG(DSDR, DEBUG_DEBUG, "Thread sending exit!\n");
sdr->thread_read.running = 0;
while (sdr->thread_read.exit == 0)
usleep(1000);
}
}
if (sdr->thread_read.buffer)
free((void *)sdr->thread_read.buffer);
if (sdr->thread_read.buffer2)
free((void *)sdr->thread_read.buffer2);
if (sdr->thread_write.buffer)
free((void *)sdr->thread_write.buffer);
if (sdr->thread_write.buffer2)
free((void *)sdr->thread_write.buffer2);
#ifdef HAVE_UHD
if (sdr_config->uhd)
uhd_close();
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy)
soapy_close();
#endif
if (sdr) {
free(sdr->modbuff);
free(sdr->modbuff_I);
free(sdr->modbuff_Q);
free(sdr->wavespl0);
free(sdr->wavespl1);
wave_destroy_record(&sdr->wave_rx_rec);
wave_destroy_record(&sdr->wave_tx_rec);
wave_destroy_playback(&sdr->wave_rx_play);
wave_destroy_playback(&sdr->wave_tx_play);
if (sdr->chan) {
int c;
for (c = 0; c < sdr->channels; c++) {
fm_mod_exit(&sdr->chan[c].mod);
fm_demod_exit(&sdr->chan[c].demod);
}
if (sdr->paging_channel)
fm_mod_exit(&sdr->chan[sdr->paging_channel].mod);
free(sdr->chan);
}
free(sdr);
sdr = NULL;
}
}
int sdr_write(void *inst, sample_t **samples, uint8_t **power, int num, enum paging_signal __attribute__((unused)) *paging_signal, int *on, int channels)
{
sdr_t *sdr = (sdr_t *)inst;
float *buff = NULL;
int c, s, ss;
int sent = 0;
if (num > sdr->latspl) {
fprintf(stderr, "exceeding maximum size given by sdr_latspl, please fix!\n");
abort();
}
if (channels != sdr->channels && channels != 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Invalid number of channels, please fix!\n");
abort();
}
/* process all channels */
if (channels) {
buff = sdr->modbuff;
memset(buff, 0, sizeof(*buff) * num * 2);
for (c = 0; c < channels; c++) {
/* switch to paging channel, if requested */
if (on[c] && sdr->paging_channel)
fm_modulate_complex(&sdr->chan[sdr->paging_channel].mod, samples[c], power[c], num, buff);
else
fm_modulate_complex(&sdr->chan[c].mod, samples[c], power[c], num, buff);
}
} else {
buff = (float *)samples;
}
if (sdr->wave_tx_rec.fp) {
sample_t *spl_list[2] = { sdr->wavespl0, sdr->wavespl1 };
for (s = 0, ss = 0; s < num; s++) {
spl_list[0][s] = buff[ss++];
spl_list[1][s] = buff[ss++];
}
wave_write(&sdr->wave_tx_rec, spl_list, num);
}
if (sdr->wave_tx_play.fp) {
sample_t *spl_list[2] = { sdr->wavespl0, sdr->wavespl1 };
wave_read(&sdr->wave_tx_play, spl_list, num);
for (s = 0, ss = 0; s < num; s++) {
buff[ss++] = spl_list[0][s];
buff[ss++] = spl_list[1][s];
}
}
if (sdr->threads) {
/* store data towards SDR in ring buffer */
int fill, space, in;
fill = (sdr->thread_write.in - sdr->thread_write.out + sdr->thread_write.buffer_size) % sdr->thread_write.buffer_size;
space = (sdr->thread_write.out - sdr->thread_write.in - 2 + sdr->thread_write.buffer_size) % sdr->thread_write.buffer_size;
/* debug fill level */
if (fill > sdr->thread_write.max_fill)
sdr->thread_write.max_fill = fill;
if (sdr->thread_write.max_fill_timer == 0.0)
sdr->thread_write.max_fill_timer = get_time();
if (get_time() - sdr->thread_write.max_fill_timer > 1.0) {
double delay;
delay = (double)sdr->thread_write.max_fill / 2.0 / (double)sdr->samplerate;
sdr->thread_write.max_fill = 0;
sdr->thread_write.max_fill_timer += 1.0;
PDEBUG(DSDR, DEBUG_DEBUG, "write delay = %.3f ms\n", delay * 1000.0);
}
if (space < num * 2) {
PDEBUG(DSDR, DEBUG_ERROR, "Write SDR buffer overflow!\n");
num = space / 2;
}
#ifdef DEBUG_BUFFER
printf("Writing %d samples to write buffer.\n", num);
#endif
in = sdr->thread_write.in;
for (s = 0, ss = 0; s < num; s++) {
sdr->thread_write.buffer[in++] = buff[ss++];
sdr->thread_write.buffer[in++] = buff[ss++];
in %= sdr->thread_write.buffer_size;
}
sdr->thread_write.in = in;
sent = num;
} else {
#ifdef HAVE_UHD
if (sdr_config->uhd)
sent = uhd_send(buff, num);
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy)
sent = soapy_send(buff, num);
#endif
if (sent < 0)
return sent;
}
return sent;
}
int sdr_read(void *inst, sample_t **samples, int num, int channels, double *rf_level_db)
{
sdr_t *sdr = (sdr_t *)inst;
float *buff = NULL;
int count = 0;
int c, s, ss;
if (num > sdr->latspl) {
fprintf(stderr, "exceeding maximum size given by sdr_latspl, please fix!\n");
abort();
}
if (channels) {
buff = sdr->modbuff;
} else {
buff = (float *)samples;
}
if (sdr->threads) {
/* load data from SDR out of ring buffer */
int fill, out;
fill = (sdr->thread_read.in - sdr->thread_read.out + sdr->thread_read.buffer_size) % sdr->thread_read.buffer_size;
/* debug fill level */
if (fill > sdr->thread_read.max_fill)
sdr->thread_read.max_fill = fill;
if (sdr->thread_read.max_fill_timer == 0.0)
sdr->thread_read.max_fill_timer = get_time();
if (get_time() - sdr->thread_read.max_fill_timer > 1.0) {
double delay;
delay = (double)sdr->thread_read.max_fill / 2.0 / (double)sdr_config->samplerate;
sdr->thread_read.max_fill = 0;
sdr->thread_read.max_fill_timer += 1.0;
PDEBUG(DSDR, DEBUG_DEBUG, "read delay = %.3f ms\n", delay * 1000.0);
}
if (fill / 2 / sdr->oversample < num)
num = fill / 2 / sdr->oversample;
#ifdef DEBUG_BUFFER
printf("Reading %d samples from read buffer.\n", num);
#endif
out = sdr->thread_read.out;
for (s = 0, ss = 0; s < num; s++) {
buff[ss++] = sdr->thread_read.buffer[out];
buff[ss++] = sdr->thread_read.buffer[out + 1];
out = (out + 2 * sdr->oversample) % sdr->thread_read.buffer_size;
}
sdr->thread_read.out = out;
count = num;
} else {
#ifdef HAVE_UHD
if (sdr_config->uhd)
count = uhd_receive(buff, num);
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy)
count = soapy_receive(buff, num);
#endif
if (count <= 0)
return count;
}
if (sdr_rx_overflow) {
PDEBUG(DSDR, DEBUG_ERROR, "SDR RX overflow!\n");
sdr_rx_overflow = 0;
}
if (sdr->wave_rx_rec.fp) {
sample_t *spl_list[2] = { sdr->wavespl0, sdr->wavespl1 };
for (s = 0, ss = 0; s < count; s++) {
spl_list[0][s] = buff[ss++];
spl_list[1][s] = buff[ss++];
}
wave_write(&sdr->wave_rx_rec, spl_list, count);
}
if (sdr->wave_rx_play.fp) {
sample_t *spl_list[2] = { sdr->wavespl0, sdr->wavespl1 };
wave_read(&sdr->wave_rx_play, spl_list, count);
for (s = 0, ss = 0; s < count; s++) {
buff[ss++] = spl_list[0][s];
buff[ss++] = spl_list[1][s];
}
}
display_iq(buff, count);
display_spectrum(buff, count);
if (channels) {
for (c = 0; c < channels; c++) {
fm_demodulate_complex(&sdr->chan[c].demod, samples[c], count, buff, sdr->modbuff_I, sdr->modbuff_Q);
sender_t *sender = get_sender_by_empfangsfrequenz(sdr->chan[c].rx_frequency);
if (!sender || !count)
continue;
double min, max, avg;
avg = 0.0;
for (s = 0; s < count; s++) {
/* average the square length of vector */
avg += sdr->modbuff_I[s] * sdr->modbuff_I[s] + sdr->modbuff_Q[s] * sdr->modbuff_Q[s];
}
avg = sqrt(avg /(double)count); /* RMS */
avg = log10(avg) * 20;
display_measurements_update(sdr->chan[c].dmp_rf_level, avg, 0.0);
rf_level_db[c] = avg;
min = 0.0;
max = 0.0;
avg = 0.0;
for (s = 0; s < count; s++) {
avg += samples[c][s];
if (s == 0 || samples[c][s] > max)
max = samples[c][s];
if (s == 0 || samples[c][s] < min)
min = samples[c][s];
}
avg /= (double)count;
display_measurements_update(sdr->chan[c].dmp_freq_offset, avg / 1000.0, 0.0);
/* use half min and max, because we want the deviation above/below (+-) center frequency. */
display_measurements_update(sdr->chan[c].dmp_deviation, min / 2.0 / 1000.0, max / 2.0 / 1000.0);
}
}
return count;
}
/* how much do we need to send (in audio sample duration) to get the target delay (latspl) */
int sdr_get_tosend(void *inst, int latspl)
{
sdr_t *sdr = (sdr_t *)inst;
int count = 0;
#ifdef HAVE_UHD
if (sdr_config->uhd)
count = uhd_get_tosend(latspl * sdr->oversample);
#endif
#ifdef HAVE_SOAPY
if (sdr_config->soapy)
count = soapy_get_tosend(latspl * sdr->oversample);
#endif
if (count < 0)
return count;
count /= sdr->oversample;
if (sdr->threads) {
/* substract what we have in write buffer, because this is not jent sent to the SDR */
int fill;
fill = (sdr->thread_write.in - sdr->thread_write.out + sdr->thread_write.buffer_size) % sdr->thread_write.buffer_size;
count -= fill / 2;
if (count < 0)
count = 0;
}
return count;
}

8
src/libsdr/sdr.h Normal file
View File

@@ -0,0 +1,8 @@
int sdr_start(void *inst);
void *sdr_open(const char *audiodev, double *tx_frequency, double *rx_frequency, int channels, double paging_frequency, int samplerate, int latspl, double bandwidth, double sample_deviation);
void sdr_close(void *inst);
int sdr_write(void *inst, sample_t **samples, uint8_t **power, int num, enum paging_signal *paging_signal, int *on, int channels);
int sdr_read(void *inst, sample_t **samples, int num, int channels, double *rf_level_db);
int sdr_get_tosend(void *inst, int latspl);

262
src/libsdr/sdr_config.c Normal file
View File

@@ -0,0 +1,262 @@
/* Config for SDR
*
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
enum paging_signal;
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <getopt.h>
#include "../common/sample.h"
#include "sdr.h"
#include "sdr_config.h"
static int got_init = 0;
extern int use_sdr;
sdr_config_t *sdr_config = NULL;
void sdr_config_init(void)
{
sdr_config = calloc(1, sizeof(*sdr_config));
memset(sdr_config, 0, sizeof(*sdr_config));
sdr_config->device_args = "";
sdr_config->stream_args = "";
sdr_config->tune_args = "";
got_init = 1;
}
void sdr_config_print_help(void)
{
printf("\nSDR options:\n");
/* - - */
#ifdef HAVE_UHD
printf(" --sdr-uhd\n");
printf(" Force UHD driver\n");
#endif
#ifdef HAVE_SOAPY
printf(" --sdr-soapy\n");
printf(" Force SoapySDR driver\n");
#endif
printf(" --sdr-channel <channel #>\n");
printf(" Give channel number for multi channel SDR device (default = %d)\n", sdr_config->channel);
printf(" --sdr-device-args <args>\n");
printf(" --sdr-stream-args <args>\n");
printf(" --sdr-tune-args <args>\n");
printf(" Optional SDR device arguments, seperated by comma\n");
printf(" e.g. --sdr-device-args <key>=<value>[,<key>=<value>[,...]]\n");
printf(" --sdr-samplerate <samplerate>\n");
printf(" Sample rate to use with SDR. By default it equals the regular sample\n");
printf(" rate.\n");
printf(" --sdr-bandwidth <bandwidth>\n");
printf(" Give IF filter bandwidth to use. If not, sample rate is used.\n");
printf(" --sdr-rx-antenna <name>\n");
printf(" SDR device's RX antenna name, use 'list' to get a list\n");
printf(" --sdr-tx-antenna <name>\n");
printf(" SDR device's TX antenna name, use 'list' to get a list\n");
printf(" --sdr-rx-gain <gain>\n");
printf(" SDR device's RX gain in dB (default = %.1f)\n", sdr_config->rx_gain);
printf(" --sdr-tx-gain <gain>\n");
printf(" SDR device's TX gain in dB (default = %.1f)\n", sdr_config->tx_gain);
printf(" --write-iq-rx-wave <file>\n");
printf(" Write received IQ data to given wave file.\n");
printf(" --write-iq-tx-wave <file>\n");
printf(" Write transmitted IQ data to given wave file.\n");
printf(" --read-iq-rx-wave <file>\n");
printf(" Replace received IQ data by given wave file.\n");
printf(" --read-iq-tx-wave <file>\n");
printf(" Replace transmitted IQ data by given wave file.\n");
printf(" --sdr-swap-links\n");
printf(" Swap RX and TX frequencies for loopback tests over the air.\n");
#ifdef HAVE_UHD
printf(" --sdr-uhd-tx-timestamps\n");
printf(" Use TX timestamps on UHD device. (May not work with some devices!)\n");
#endif
}
void sdr_config_print_hotkeys(void)
{
printf("Press 'q' key to toggle display of RX I/Q vector.\n");
printf("Press 's' key to toggle display of RX spectrum.\n");
}
#define OPT_SDR_UHD 1500
#define OPT_SDR_SOAPY 1501
#define OPT_SDR_CHANNEL 1502
#define OPT_SDR_DEVICE_ARGS 1503
#define OPT_SDR_STREAM_ARGS 1504
#define OPT_SDR_TUNE_ARGS 1505
#define OPT_SDR_RX_ANTENNA 1506
#define OPT_SDR_TX_ANTENNA 1507
#define OPT_SDR_RX_GAIN 1508
#define OPT_SDR_TX_GAIN 1509
#define OPT_SDR_SAMPLERATE 1510
#define OPT_SDR_BANDWIDTH 1511
#define OPT_WRITE_IQ_RX_WAVE 1512
#define OPT_WRITE_IQ_TX_WAVE 1513
#define OPT_READ_IQ_RX_WAVE 1514
#define OPT_READ_IQ_TX_WAVE 1515
#define OPT_SDR_SWAP_LINKS 1516
#define OPT_SDR_UHD_TX_TS 1517
struct option sdr_config_long_options[] = {
{"sdr-uhd", 0, 0, OPT_SDR_UHD},
{"sdr-soapy", 0, 0, OPT_SDR_SOAPY},
{"sdr-channel", 1, 0, OPT_SDR_CHANNEL},
{"sdr-device-args", 1, 0, OPT_SDR_DEVICE_ARGS},
{"sdr-stream-args", 1, 0, OPT_SDR_STREAM_ARGS},
{"sdr-tune-args", 1, 0, OPT_SDR_TUNE_ARGS},
{"sdr-samplerate", 1, 0, OPT_SDR_SAMPLERATE},
{"sdr-bandwidth", 1, 0, OPT_SDR_BANDWIDTH},
{"sdr-rx-antenna", 1, 0, OPT_SDR_RX_ANTENNA},
{"sdr-tx-antenna", 1, 0, OPT_SDR_TX_ANTENNA},
{"sdr-rx-gain", 1, 0, OPT_SDR_RX_GAIN},
{"sdr-tx-gain", 1, 0, OPT_SDR_TX_GAIN},
{"write-iq-rx-wave", 1, 0, OPT_WRITE_IQ_RX_WAVE},
{"write-iq-tx-wave", 1, 0, OPT_WRITE_IQ_TX_WAVE},
{"read-iq-rx-wave", 1, 0, OPT_READ_IQ_RX_WAVE},
{"read-iq-tx-wave", 1, 0, OPT_READ_IQ_TX_WAVE},
{"sdr-swap-links", 0, 0, OPT_SDR_SWAP_LINKS},
{"sdr-uhd-tx-timestamps", 0, 0, OPT_SDR_UHD_TX_TS},
{0, 0, 0, 0}
};
const char *sdr_config_optstring = "";
int sdr_config_opt_switch(int c, int *skip_args)
{
switch (c) {
case OPT_SDR_UHD:
#ifdef HAVE_UHD
sdr_config->uhd = 1;
use_sdr = 1;
#else
fprintf(stderr, "UHD SDR support not compiled in!\n");
exit(0);
#endif
*skip_args += 1;
break;
case OPT_SDR_SOAPY:
#ifdef HAVE_SOAPY
sdr_config->soapy = 1;
use_sdr = 1;
#else
fprintf(stderr, "SoapySDR support not compiled in!\n");
exit(0);
#endif
*skip_args += 1;
break;
case OPT_SDR_CHANNEL:
sdr_config->channel = atoi(optarg);
*skip_args += 2;
break;
case OPT_SDR_DEVICE_ARGS:
sdr_config->device_args = strdup(optarg);
*skip_args += 2;
break;
case OPT_SDR_STREAM_ARGS:
sdr_config->stream_args = strdup(optarg);
*skip_args += 2;
break;
case OPT_SDR_TUNE_ARGS:
sdr_config->tune_args = strdup(optarg);
*skip_args += 2;
break;
case OPT_SDR_SAMPLERATE:
sdr_config->samplerate = atoi(optarg);
*skip_args += 2;
break;
case OPT_SDR_BANDWIDTH:
sdr_config->bandwidth = atof(optarg);
*skip_args += 2;
break;
case OPT_SDR_RX_ANTENNA:
sdr_config->rx_antenna = strdup(optarg);
*skip_args += 2;
break;
case OPT_SDR_TX_ANTENNA:
sdr_config->tx_antenna = strdup(optarg);
*skip_args += 2;
break;
case OPT_SDR_RX_GAIN:
sdr_config->rx_gain = atof(optarg);
*skip_args += 2;
break;
case OPT_SDR_TX_GAIN:
sdr_config->tx_gain = atof(optarg);
*skip_args += 2;
break;
case OPT_WRITE_IQ_RX_WAVE:
sdr_config->write_iq_rx_wave = strdup(optarg);
*skip_args += 2;
break;
case OPT_WRITE_IQ_TX_WAVE:
sdr_config->write_iq_tx_wave = strdup(optarg);
*skip_args += 2;
break;
case OPT_READ_IQ_RX_WAVE:
sdr_config->read_iq_rx_wave = strdup(optarg);
*skip_args += 2;
break;
case OPT_READ_IQ_TX_WAVE:
sdr_config->read_iq_tx_wave = strdup(optarg);
*skip_args += 2;
break;
case OPT_SDR_SWAP_LINKS:
sdr_config->swap_links = 1;
*skip_args += 1;
break;
case OPT_SDR_UHD_TX_TS:
sdr_config->uhd_tx_timestamps = 1;
*skip_args += 1;
break;
default:
return -1;
}
return 0;
}
int sdr_configure(int samplerate)
{
if (!got_init) {
fprintf(stderr, "sdr_config_init was not called, please fix!\n");
abort();
}
/* no sdr selected -> return 0 */
if (!sdr_config->uhd && !sdr_config->soapy)
return 0;
if ((sdr_config->uhd == 1 && sdr_config->soapy == 1)) {
fprintf(stderr, "You must choose which one you want: --sdr-uhd or --sdr-soapy\n");
exit(0);
}
if (sdr_config->samplerate == 0)
sdr_config->samplerate = samplerate;
if (sdr_config->bandwidth == 0.0)
sdr_config->bandwidth = (double)sdr_config->samplerate;
/* sdr selected -> return 1 */
return 1;
}

32
src/libsdr/sdr_config.h Normal file
View File

@@ -0,0 +1,32 @@
typedef struct sdr_config {
int uhd, /* select UHD API */
soapy; /* select Soapy SDR API */
int channel; /* channel number */
const char *device_args, /* arguments */
*stream_args,
*tune_args;
int samplerate; /* ADC/DAC sample rate */
double bandwidth; /* IF bandwidth */
double tx_gain, /* gain */
rx_gain;
const char *tx_antenna, /* list/override antennas */
*rx_antenna;
const char *write_iq_tx_wave; /* wave recording and playback */
const char *write_iq_rx_wave;
const char *read_iq_tx_wave;
const char *read_iq_rx_wave;
int swap_links; /* swap DL and UL frequency */
int uhd_tx_timestamps; /* use UHD time stamps */
} sdr_config_t;
extern sdr_config_t *sdr_config;
void sdr_config_init(void);
void sdr_config_print_help(void);
void sdr_config_print_hotkeys(void);
extern struct option sdr_config_long_options[];
extern const char *sdr_config_optstring;
int sdr_config_opt_switch(int c, int *skip_args);
int sdr_configure(int samplerate);

468
src/libsdr/soapy.c Normal file
View File

@@ -0,0 +1,468 @@
/* SoapySDR device access
*
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <SoapySDR/Device.h>
#include <SoapySDR/Formats.h>
#include "soapy.h"
#include "../common/debug.h"
extern int sdr_rx_overflow;
static SoapySDRDevice *sdr = NULL;
SoapySDRStream *rxStream = NULL;
SoapySDRStream *txStream = NULL;
static int tx_samps_per_buff, rx_samps_per_buff;
static double samplerate;
static uint64_t rx_count = 0;
static uint64_t tx_count = 0;
static int parse_args(SoapySDRKwargs *args, const char *_args_string)
{
char *args_string = strdup(_args_string), *key, *val;
memset(args, 0, sizeof(*args));
while (args_string && *args_string) {
key = args_string;
val = strchr(key, '=');
if (!val) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Error parsing SDR args: No '=' after key\n");
soapy_close();
return -EIO;
}
*val++ = '\0';
args_string = strchr(val, ',');
if (args_string)
*args_string++ = '\0';
PDEBUG(DSOAPY, DEBUG_DEBUG, "SDR device args: key='%s' value='%s'\n", key, val);
SoapySDRKwargs_set(args, key, val);
}
return 0;
}
int soapy_open(size_t channel, const char *_device_args, const char *_stream_args, const char *_tune_args, const char *tx_antenna, const char *rx_antenna, double tx_frequency, double rx_frequency, double rate, double tx_gain, double rx_gain, double bandwidth)
{
double got_frequency, got_rate, got_gain, got_bandwidth;
const char *got_antenna;
size_t num_channels;
SoapySDRKwargs device_args;
SoapySDRKwargs stream_args;
SoapySDRKwargs tune_args;
int rc;
samplerate = rate;
/* parsing ARGS */
PDEBUG(DSOAPY, DEBUG_INFO, "Using device args \"%s\"\n", _device_args);
rc = parse_args(&device_args, _device_args);
if (rc < 0)
return rc;
PDEBUG(DSOAPY, DEBUG_INFO, "Using stream args \"%s\"\n", _stream_args);
rc = parse_args(&stream_args, _stream_args);
if (rc < 0)
return rc;
PDEBUG(DSOAPY, DEBUG_INFO, "Using tune args \"%s\"\n", _tune_args);
rc = parse_args(&tune_args, _tune_args);
if (rc < 0)
return rc;
/* create SoapySDR device */
sdr = SoapySDRDevice_make(&device_args);
if (!sdr) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to create SoapySDR\n");
soapy_close();
return -EIO;
}
if (tx_frequency) {
/* get number of channels and check if requested channel is in range */
num_channels = SoapySDRDevice_getNumChannels(sdr, SOAPY_SDR_TX);
PDEBUG(DSOAPY, DEBUG_DEBUG, "We have %d TX channel, selecting channel #%d\n", (int)num_channels, (int)channel);
if (channel >= num_channels) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Requested channel #%d (capable of TX) does not exist. Please select channel %d..%d!\n", (int)channel, 0, (int)num_channels - 1);
soapy_close();
return -EIO;
}
/* antenna */
if (tx_antenna && tx_antenna[0]) {
if (!strcasecmp(tx_antenna, "list")) {
char **antennas;
size_t antennas_length;
int i;
antennas = SoapySDRDevice_listAntennas(sdr, SOAPY_SDR_TX, channel, &antennas_length);
if (!antennas) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to request list of TX antennas!\n");
soapy_close();
return -EIO;
}
for (i = 0; i < (int)antennas_length; i++)
PDEBUG(DSOAPY, DEBUG_NOTICE, "TX Antenna: '%s'\n", antennas[i]);
got_antenna = SoapySDRDevice_getAntenna(sdr, SOAPY_SDR_TX, channel);
PDEBUG(DSOAPY, DEBUG_NOTICE, "Default TX Antenna: '%s'\n", got_antenna);
soapy_close();
return 1;
}
if (SoapySDRDevice_setAntenna(sdr, SOAPY_SDR_TX, channel, tx_antenna) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set TX antenna to '%s'\n", tx_antenna);
soapy_close();
return -EIO;
}
got_antenna = SoapySDRDevice_getAntenna(sdr, SOAPY_SDR_TX, channel);
if (!!strcasecmp(tx_antenna, got_antenna)) {
PDEBUG(DSOAPY, DEBUG_NOTICE, "Given TX antenna '%s' was accepted, but driver claims to use '%s'\n", tx_antenna, got_antenna);
soapy_close();
return -EINVAL;
}
}
/* set rate */
if (SoapySDRDevice_setSampleRate(sdr, SOAPY_SDR_TX, channel, rate) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set TX rate to %.0f Hz\n", rate);
soapy_close();
return -EIO;
}
/* see what rate actually is */
got_rate = SoapySDRDevice_getSampleRate(sdr, SOAPY_SDR_TX, channel);
if (fabs(got_rate - rate) > 1.0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Given TX rate %.3f Hz is not supported, try %.3f Hz\n", rate, got_rate);
soapy_close();
return -EINVAL;
}
if (tx_gain) {
/* set gain */
if (SoapySDRDevice_setGain(sdr, SOAPY_SDR_TX, channel, tx_gain) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set TX gain to %.0f\n", tx_gain);
soapy_close();
return -EIO;
}
/* see what gain actually is */
got_gain = SoapySDRDevice_getGain(sdr, SOAPY_SDR_TX, channel);
if (fabs(got_gain - tx_gain) > 0.001) {
PDEBUG(DSOAPY, DEBUG_NOTICE, "Given TX gain %.3f is not supported, we use %.3f\n", tx_gain, got_gain);
tx_gain = got_gain;
}
}
/* set frequency */
if (SoapySDRDevice_setFrequency(sdr, SOAPY_SDR_TX, channel, tx_frequency, &tune_args) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set TX frequency to %.0f Hz\n", tx_frequency);
soapy_close();
return -EIO;
}
/* see what frequency actually is */
got_frequency = SoapySDRDevice_getFrequency(sdr, SOAPY_SDR_TX, channel);
if (fabs(got_frequency - tx_frequency) > 100.0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Given TX frequency %.0f Hz is not supported, try %.0f Hz\n", tx_frequency, got_frequency);
soapy_close();
return -EINVAL;
}
/* set bandwidth */
if (SoapySDRDevice_setBandwidth(sdr, SOAPY_SDR_TX, channel, bandwidth) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set TX bandwidth to %.0f Hz\n", bandwidth);
soapy_close();
return -EIO;
}
/* see what bandwidth actually is */
got_bandwidth = SoapySDRDevice_getBandwidth(sdr, SOAPY_SDR_TX, channel);
if (fabs(got_bandwidth - bandwidth) > 100.0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Given TX bandwidth %.0f Hz is not supported, try %.0f Hz\n", bandwidth, got_bandwidth);
soapy_close();
return -EINVAL;
}
/* set up streamer */
if (SoapySDRDevice_setupStream(sdr, &txStream, SOAPY_SDR_TX, SOAPY_SDR_CF32, &channel, 1, &stream_args) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set TX streamer args\n");
soapy_close();
return -EIO;
}
/* get buffer sizes */
tx_samps_per_buff = SoapySDRDevice_getStreamMTU(sdr, txStream);
if (tx_samps_per_buff == 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to get TX streamer sample buffer\n");
soapy_close();
return -EIO;
}
}
if (rx_frequency) {
/* get number of channels and check if requested channel is in range */
num_channels = SoapySDRDevice_getNumChannels(sdr, SOAPY_SDR_RX);
PDEBUG(DSOAPY, DEBUG_DEBUG, "We have %d RX channel, selecting channel #%d\n", (int)num_channels, (int)channel);
if (channel >= num_channels) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Requested channel #%d (capable of RX) does not exist. Please select channel %d..%d!\n", (int)channel, 0, (int)num_channels - 1);
soapy_close();
return -EIO;
}
/* antenna */
if (rx_antenna && rx_antenna[0]) {
if (!strcasecmp(rx_antenna, "list")) {
char **antennas;
size_t antennas_length;
int i;
antennas = SoapySDRDevice_listAntennas(sdr, SOAPY_SDR_RX, channel, &antennas_length);
if (!antennas) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to request list of RX antennas!\n");
soapy_close();
return -EIO;
}
for (i = 0; i < (int)antennas_length; i++)
PDEBUG(DSOAPY, DEBUG_NOTICE, "RX Antenna: '%s'\n", antennas[i]);
got_antenna = SoapySDRDevice_getAntenna(sdr, SOAPY_SDR_RX, channel);
PDEBUG(DSOAPY, DEBUG_NOTICE, "Default RX Antenna: '%s'\n", got_antenna);
soapy_close();
return 1;
}
if (SoapySDRDevice_setAntenna(sdr, SOAPY_SDR_RX, channel, rx_antenna) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set RX antenna to '%s'\n", rx_antenna);
soapy_close();
return -EIO;
}
got_antenna = SoapySDRDevice_getAntenna(sdr, SOAPY_SDR_RX, channel);
if (!!strcasecmp(rx_antenna, got_antenna)) {
PDEBUG(DSOAPY, DEBUG_NOTICE, "Given RX antenna '%s' was accepted, but driver claims to use '%s'\n", rx_antenna, got_antenna);
soapy_close();
return -EINVAL;
}
}
/* set rate */
if (SoapySDRDevice_setSampleRate(sdr, SOAPY_SDR_RX, channel, rate) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set RX rate to %.0f Hz\n", rate);
soapy_close();
return -EIO;
}
/* see what rate actually is */
got_rate = SoapySDRDevice_getSampleRate(sdr, SOAPY_SDR_RX, channel);
if (fabs(got_rate - rate) > 1.0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Given RX rate %.3f Hz is not supported, try %.3f Hz\n", rate, got_rate);
soapy_close();
return -EINVAL;
}
if (rx_gain) {
/* set gain */
if (SoapySDRDevice_setGain(sdr, SOAPY_SDR_RX, channel, rx_gain) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set RX gain to %.0f\n", rx_gain);
soapy_close();
return -EIO;
}
/* see what gain actually is */
got_gain = SoapySDRDevice_getGain(sdr, SOAPY_SDR_RX, channel);
if (fabs(got_gain - rx_gain) > 0.001) {
PDEBUG(DSOAPY, DEBUG_NOTICE, "Given RX gain %.3f is not supported, we use %.3f\n", rx_gain, got_gain);
rx_gain = got_gain;
}
}
/* set frequency */
if (SoapySDRDevice_setFrequency(sdr, SOAPY_SDR_RX, channel, rx_frequency, &tune_args) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set RX frequency to %.0f Hz\n", rx_frequency);
soapy_close();
return -EIO;
}
/* see what frequency actually is */
got_frequency = SoapySDRDevice_getFrequency(sdr, SOAPY_SDR_RX, channel);
if (fabs(got_frequency - rx_frequency) > 100.0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Given RX frequency %.0f Hz is not supported, try %.0f Hz\n", rx_frequency, got_frequency);
soapy_close();
return -EINVAL;
}
/* set bandwidth */
if (SoapySDRDevice_setBandwidth(sdr, SOAPY_SDR_RX, channel, bandwidth) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set RX bandwidth to %.0f Hz\n", bandwidth);
soapy_close();
return -EIO;
}
/* see what bandwidth actually is */
got_bandwidth = SoapySDRDevice_getBandwidth(sdr, SOAPY_SDR_RX, channel);
if (fabs(got_bandwidth - bandwidth) > 100.0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Given RX bandwidth %.0f Hz is not supported, try %.0f Hz\n", bandwidth, got_bandwidth);
soapy_close();
return -EINVAL;
}
/* set up streamer */
if (SoapySDRDevice_setupStream(sdr, &rxStream, SOAPY_SDR_RX, SOAPY_SDR_CF32, &channel, 1, &stream_args) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to set RX streamer args\n");
soapy_close();
return -EIO;
}
/* get buffer sizes */
rx_samps_per_buff = SoapySDRDevice_getStreamMTU(sdr, rxStream);
if (rx_samps_per_buff == 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to get RX streamer sample buffer\n");
soapy_close();
return -EIO;
}
}
return 0;
}
/* start streaming */
int soapy_start(void)
{
/* enable rx stream */
if (SoapySDRDevice_activateStream(sdr, rxStream, 0, 0, 0) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to issue RX stream command\n");
return -EIO;
}
/* enable tx stream */
if (SoapySDRDevice_activateStream(sdr, txStream, 0, 0, 0) != 0) {
PDEBUG(DSOAPY, DEBUG_ERROR, "Failed to issue TX stream command\n");
return -EIO;
}
return 0;
}
void soapy_close(void)
{
PDEBUG(DSOAPY, DEBUG_DEBUG, "Clean up SoapySDR\n");
if (txStream) {
SoapySDRDevice_deactivateStream(sdr, txStream, 0, 0);
SoapySDRDevice_closeStream(sdr, txStream);
txStream = NULL;
}
if (rxStream) {
SoapySDRDevice_deactivateStream(sdr, rxStream, 0, 0);
SoapySDRDevice_closeStream(sdr, rxStream);
rxStream = NULL;
}
if (sdr) {
SoapySDRDevice_unmake(sdr);
sdr = NULL;
}
}
int soapy_send(float *buff, int num)
{
const void *buffs_ptr[1];
int chunk;
int sent = 0, count;
int flags = 0;
while (num) {
chunk = num;
if (chunk > tx_samps_per_buff)
chunk = tx_samps_per_buff;
/* create tx metadata */
buffs_ptr[0] = buff;
count = SoapySDRDevice_writeStream(sdr, txStream, buffs_ptr, chunk, &flags, 0, 1000000);
if (count <= 0) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to write to TX streamer (error=%d)\n", count);
break;
}
sent += count;
buff += count * 2;
num -= count;
}
/* increment tx counter */
tx_count += sent;
return sent;
}
/* read what we got, return 0, if buffer is empty, otherwise return the number of samples */
int soapy_receive(float *buff, int max)
{
void *buffs_ptr[1];
int got = 0, count;
long long timeNs;
int flags = 0;
while (1) {
if (max < rx_samps_per_buff) {
/* no more space this time */
sdr_rx_overflow = 1;
break;
}
/* read RX stream */
buffs_ptr[0] = buff;
count = SoapySDRDevice_readStream(sdr, rxStream, buffs_ptr, rx_samps_per_buff, &flags, &timeNs, 0);
if (count > 0) {
/* commit received data to buffer */
got += count;
buff += count * 2;
max -= count;
} else {
/* got nothing this time */
break;
}
}
/* update current rx time */
rx_count += got;
return got;
}
/* estimate number of samples that can be sent */
int soapy_get_tosend(int latspl)
{
int tosend;
/* we need the rx time stamp to determine how much data is already sent in advance */
if (rx_count == 0)
return 0;
/* if we have not yet sent any data, we set initial tx time stamp */
if (tx_count == 0)
tx_count = rx_count;
/* we check how advance our transmitted time stamp is */
tosend = latspl - (tx_count - rx_count);
/* in case of underrun: */
if (tosend > latspl) {
// It is normal that we have underruns, prior inital filling of buffer.
// FIXME: better solution to detect underrun
// PDEBUG(DSOAPY, DEBUG_ERROR, "SDR TX underrun!\n");
tosend = 0;
tx_count = rx_count;
}
if (tosend < 0)
tosend = 0;
return tosend;
}

8
src/libsdr/soapy.h Normal file
View File

@@ -0,0 +1,8 @@
int soapy_open(size_t channel, const char *_device_args, const char *_stream_args, const char *_tune_args, const char *tx_antenna, const char *rx_antenna, double tx_frequency, double rx_frequency, double rate, double tx_gain, double rx_gain, double bandwidth);
int soapy_start(void);
void soapy_close(void);
int soapy_send(float *buff, int num);
int soapy_receive(float *buff, int max);
int soapy_get_tosend(int latspl);

585
src/libsdr/uhd.c Normal file
View File

@@ -0,0 +1,585 @@
/* UHD device access
*
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <uhd.h>
#include <uhd/usrp/usrp.h>
#include "uhd.h"
#include "../common/debug.h"
/* use to TX time stamp */
//#define TX_TIMESTAMP
extern int sdr_rx_overflow;
static uhd_usrp_handle usrp = NULL;
static uhd_tx_streamer_handle tx_streamer = NULL;
static uhd_rx_streamer_handle rx_streamer = NULL;
static uhd_tx_metadata_handle tx_metadata = NULL;
static uhd_rx_metadata_handle rx_metadata = NULL;
static uhd_tune_request_t tune_request;
static uhd_tune_result_t tune_result;
static uhd_stream_args_t stream_args;
static uhd_stream_cmd_t stream_cmd;
static size_t tx_samps_per_buff, rx_samps_per_buff;
static double samplerate;
static time_t rx_time_secs = 0;
static double rx_time_fract_sec = 0.0;
static time_t tx_time_secs = 0;
static double tx_time_fract_sec = 0.0;
static int tx_timestamps;
int uhd_open(size_t channel, const char *_device_args, const char *_stream_args, const char *_tune_args, const char *tx_antenna, const char *rx_antenna, double tx_frequency, double rx_frequency, double rate, double tx_gain, double rx_gain, double bandwidth, int _tx_timestamps)
{
uhd_error error;
double got_frequency, got_rate, got_gain, got_bandwidth;
char got_antenna[64];
samplerate = rate;
tx_timestamps = _tx_timestamps;
PDEBUG(DUHD, DEBUG_INFO, "Using device args \"%s\"\n", _device_args);
PDEBUG(DUHD, DEBUG_INFO, "Using stream args \"%s\"\n", _stream_args);
PDEBUG(DUHD, DEBUG_INFO, "Using tune args \"%s\"\n", _tune_args);
/* create USRP */
PDEBUG(DUHD, DEBUG_INFO, "Creating USRP with args \"%s\"...\n", _device_args);
error = uhd_usrp_make(&usrp, _device_args);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to create USRP\n");
uhd_close();
return -EIO;
}
if (tx_frequency) {
/* antenna */
if (tx_antenna && tx_antenna[0]) {
if (!strcasecmp(tx_antenna, "list")) {
uhd_string_vector_handle antennas;
size_t antennas_length;
int i;
error = uhd_string_vector_make(&antennas);
if (error) {
tx_vector_error:
PDEBUG(DUHD, DEBUG_ERROR, "Failed to hande UHD vector, please fix!\n");
uhd_close();
return -EIO;
}
error = uhd_usrp_get_tx_antennas(usrp, channel, &antennas);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to request list of TX antennas!\n");
uhd_close();
return -EIO;
}
error = uhd_string_vector_size(antennas, &antennas_length);
if (error)
goto tx_vector_error;
for (i = 0; i < (int)antennas_length; i++) {
error = uhd_string_vector_at(antennas, i, got_antenna, sizeof(got_antenna));
if (error)
goto tx_vector_error;
PDEBUG(DUHD, DEBUG_NOTICE, "TX Antenna: '%s'\n", got_antenna);
}
uhd_string_vector_free(&antennas);
error = uhd_usrp_get_tx_antenna(usrp, channel, got_antenna, sizeof(got_antenna));
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get TX antenna\n");
uhd_close();
return -EINVAL;
}
PDEBUG(DUHD, DEBUG_NOTICE, "Default TX Antenna: '%s'\n", got_antenna);
uhd_close();
return 1;
}
error = uhd_usrp_set_tx_antenna(usrp, tx_antenna, channel);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set TX antenna to '%s'\n", tx_antenna);
uhd_close();
return -EIO;
}
error = uhd_usrp_get_tx_antenna(usrp, channel, got_antenna, sizeof(got_antenna));
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get TX antenna\n");
uhd_close();
return -EINVAL;
}
if (!!strcasecmp(tx_antenna, got_antenna)) {
PDEBUG(DUHD, DEBUG_NOTICE, "Given TX antenna '%s' was accepted, but driver claims to use '%s'\n", tx_antenna, got_antenna);
uhd_close();
return -EINVAL;
}
}
/* create streamers */
error = uhd_tx_streamer_make(&tx_streamer);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to create TX streamer\n");
uhd_close();
return -EIO;
}
/* set rate */
error = uhd_usrp_set_tx_rate(usrp, rate, channel);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set TX rate to %.0f Hz\n", rate);
uhd_close();
return -EIO;
}
/* see what rate actually is */
error = uhd_usrp_get_tx_rate(usrp, channel, &got_rate);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get TX rate\n");
uhd_close();
return -EIO;
}
if (fabs(got_rate - rate) > 0.001) {
PDEBUG(DUHD, DEBUG_ERROR, "Given TX rate %.0f Hz is not supported, try %.0f Hz\n", rate, got_rate);
uhd_close();
return -EINVAL;
}
/* set gain */
error = uhd_usrp_set_tx_gain(usrp, tx_gain, channel, "");
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set TX gain to %.0f\n", tx_gain);
uhd_close();
return -EIO;
}
/* see what gain actually is */
error = uhd_usrp_get_tx_gain(usrp, channel, "", &got_gain);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get TX gain\n");
uhd_close();
return -EIO;
}
if (fabs(got_gain - tx_gain) > 0.001) {
PDEBUG(DUHD, DEBUG_NOTICE, "Given TX gain %.0f is not supported, we use %.0f\n", tx_gain, got_gain);
tx_gain = got_gain;
}
/* set frequency */
memset(&tune_request, 0, sizeof(tune_request));
tune_request.target_freq = tx_frequency;
tune_request.rf_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO;
tune_request.dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO;
tune_request.args = strdup(_tune_args);
error = uhd_usrp_set_tx_freq(usrp, &tune_request, channel, &tune_result);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set TX frequeny to %.0f Hz\n", tx_frequency);
uhd_close();
return -EIO;
}
/* see what frequency actually is */
error = uhd_usrp_get_tx_freq(usrp, channel, &got_frequency);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get TX frequency\n");
uhd_close();
return -EIO;
}
if (fabs(got_frequency - tx_frequency) > 100.0) {
PDEBUG(DUHD, DEBUG_ERROR, "Given TX frequency %.0f Hz is not supported, try %.0f Hz\n", tx_frequency, got_frequency);
uhd_close();
return -EINVAL;
}
/* set bandwidth */
if (uhd_usrp_set_tx_bandwidth(usrp, bandwidth, channel) != 0) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set TX bandwidth to %.0f Hz\n", bandwidth);
uhd_close();
return -EIO;
}
/* see what bandwidth actually is */
error = uhd_usrp_get_tx_bandwidth(usrp, channel, &got_bandwidth);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get TX bandwidth\n");
uhd_close();
return -EIO;
}
if (fabs(got_bandwidth - bandwidth) > 0.001) {
PDEBUG(DUHD, DEBUG_ERROR, "Given TX bandwidth %.0f Hz is not supported, try %.0f Hz\n", bandwidth, got_bandwidth);
uhd_close();
return -EINVAL;
}
/* set up streamer */
memset(&stream_args, 0, sizeof(stream_args));
stream_args.cpu_format = "fc32";
stream_args.otw_format = "sc16";
stream_args.args = strdup(_stream_args);
stream_args.channel_list = &channel;
stream_args.n_channels = 1;
error = uhd_usrp_get_tx_stream(usrp, &stream_args, tx_streamer);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set TX streamer args\n");
uhd_close();
return -EIO;
}
/* get buffer sizes */
error = uhd_tx_streamer_max_num_samps(tx_streamer, &tx_samps_per_buff);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get TX streamer sample buffer\n");
uhd_close();
return -EIO;
}
}
if (rx_frequency) {
/* antenna */
if (rx_antenna && rx_antenna[0]) {
if (!strcasecmp(rx_antenna, "list")) {
uhd_string_vector_handle antennas;
size_t antennas_length;
int i;
error = uhd_string_vector_make(&antennas);
if (error) {
rx_vector_error:
PDEBUG(DUHD, DEBUG_ERROR, "Failed to hande UHD vector, please fix!\n");
uhd_close();
return -EIO;
}
error = uhd_usrp_get_rx_antennas(usrp, channel, &antennas);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to request list of RX antennas!\n");
uhd_close();
return -EIO;
}
error = uhd_string_vector_size(antennas, &antennas_length);
if (error)
goto rx_vector_error;
for (i = 0; i < (int)antennas_length; i++) {
error = uhd_string_vector_at(antennas, i, got_antenna, sizeof(got_antenna));
if (error)
goto rx_vector_error;
PDEBUG(DUHD, DEBUG_NOTICE, "RX Antenna: '%s'\n", got_antenna);
}
uhd_string_vector_free(&antennas);
error = uhd_usrp_get_rx_antenna(usrp, channel, got_antenna, sizeof(got_antenna));
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get RX antenna\n");
uhd_close();
return -EINVAL;
}
PDEBUG(DUHD, DEBUG_NOTICE, "Default RX Antenna: '%s'\n", got_antenna);
uhd_close();
return 1;
}
error = uhd_usrp_set_rx_antenna(usrp, rx_antenna, channel);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set RX antenna to '%s'\n", rx_antenna);
uhd_close();
return -EIO;
}
error = uhd_usrp_get_rx_antenna(usrp, channel, got_antenna, sizeof(got_antenna));
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get RX antenna\n");
uhd_close();
return -EINVAL;
}
if (!!strcasecmp(rx_antenna, got_antenna)) {
PDEBUG(DUHD, DEBUG_NOTICE, "Given RX antenna '%s' was accepted, but driver claims to use '%s'\n", rx_antenna, got_antenna);
uhd_close();
return -EINVAL;
}
}
/* create streamers */
error = uhd_rx_streamer_make(&rx_streamer);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to create RX streamer\n");
uhd_close();
return -EIO;
}
/* create metadata */
error = uhd_rx_metadata_make(&rx_metadata);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to create RX metadata\n");
uhd_close();
return -EIO;
}
/* set rate */
error = uhd_usrp_set_rx_rate(usrp, rate, channel);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set RX rate to %.0f Hz\n", rate);
uhd_close();
return -EIO;
}
/* see what rate actually is */
error = uhd_usrp_get_rx_rate(usrp, channel, &got_rate);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get RX rate\n");
uhd_close();
return -EIO;
}
if (fabs(got_rate - rate) > 0.001) {
PDEBUG(DUHD, DEBUG_ERROR, "Given RX rate %.0f Hz is not supported, try %.0f Hz\n", rate, got_rate);
uhd_close();
return -EINVAL;
}
/* set gain */
error = uhd_usrp_set_rx_gain(usrp, rx_gain, channel, "");
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set RX gain to %.0f\n", rx_gain);
uhd_close();
return -EIO;
}
/* see what gain actually is */
error = uhd_usrp_get_rx_gain(usrp, channel, "", &got_gain);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get RX gain\n");
uhd_close();
return -EIO;
}
if (fabs(got_gain - rx_gain) > 0.001) {
PDEBUG(DUHD, DEBUG_NOTICE, "Given RX gain %.3f is not supported, we use %.3f\n", rx_gain, got_gain);
rx_gain = got_gain;
}
/* set frequency */
memset(&tune_request, 0, sizeof(tune_request));
tune_request.target_freq = rx_frequency;
tune_request.rf_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO;
tune_request.dsp_freq_policy = UHD_TUNE_REQUEST_POLICY_AUTO;
tune_request.args = strdup(_tune_args);
error = uhd_usrp_set_rx_freq(usrp, &tune_request, channel, &tune_result);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set RX frequeny to %.0f Hz\n", rx_frequency);
uhd_close();
return -EIO;
}
/* see what frequency actually is */
error = uhd_usrp_get_rx_freq(usrp, channel, &got_frequency);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get RX frequency\n");
uhd_close();
return -EIO;
}
if (fabs(got_frequency - rx_frequency) > 100.0) {
PDEBUG(DUHD, DEBUG_ERROR, "Given RX frequency %.0f Hz is not supported, try %.0f Hz\n", rx_frequency, got_frequency);
uhd_close();
return -EINVAL;
}
/* set bandwidth */
if (uhd_usrp_set_rx_bandwidth(usrp, bandwidth, channel) != 0) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set RX bandwidth to %.0f Hz\n", bandwidth);
uhd_close();
return -EIO;
}
/* see what bandwidth actually is */
error = uhd_usrp_get_rx_bandwidth(usrp, channel, &got_bandwidth);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get RX bandwidth\n");
uhd_close();
return -EIO;
}
if (fabs(got_bandwidth - bandwidth) > 0.001) {
PDEBUG(DUHD, DEBUG_ERROR, "Given RX bandwidth %.0f Hz is not supported, try %.0f Hz\n", bandwidth, got_bandwidth);
uhd_close();
return -EINVAL;
}
/* set up streamer */
memset(&stream_args, 0, sizeof(stream_args));
stream_args.cpu_format = "fc32";
stream_args.otw_format = "sc16";
stream_args.args = strdup(_stream_args);
stream_args.channel_list = &channel;
stream_args.n_channels = 1;
error = uhd_usrp_get_rx_stream(usrp, &stream_args, rx_streamer);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to set RX streamer args\n");
uhd_close();
return -EIO;
}
/* get buffer sizes */
error = uhd_rx_streamer_max_num_samps(rx_streamer, &rx_samps_per_buff);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to get RX streamer sample buffer\n");
uhd_close();
return -EIO;
}
}
return 0;
}
/* start streaming */
int uhd_start(void)
{
uhd_error error;
/* enable rx stream */
memset(&stream_cmd, 0, sizeof(stream_cmd));
stream_cmd.stream_mode = UHD_STREAM_MODE_START_CONTINUOUS;
stream_cmd.stream_now = true;
error = uhd_rx_streamer_issue_stream_cmd(rx_streamer, &stream_cmd);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to issue RX stream command\n");
return -EIO;
}
return 0;
}
void uhd_close(void)
{
PDEBUG(DUHD, DEBUG_DEBUG, "Clean up UHD\n");
if (tx_metadata)
uhd_tx_metadata_free(&tx_metadata);
if (rx_metadata)
uhd_rx_metadata_free(&rx_metadata);
if (tx_streamer)
uhd_tx_streamer_free(&tx_streamer);
if (rx_streamer)
uhd_rx_streamer_free(&rx_streamer);
if (usrp)
uhd_usrp_free(&usrp);
}
int uhd_send(float *buff, int num)
{
const void *buffs_ptr[1];
int chunk;
size_t sent = 0, count;
uhd_error error;
while (num) {
chunk = num;
if (chunk > (int)tx_samps_per_buff)
chunk = (int)tx_samps_per_buff;
/* create tx metadata */
if (tx_timestamps)
error = uhd_tx_metadata_make(&tx_metadata, true, tx_time_secs, tx_time_fract_sec, false, false);
else
error = uhd_tx_metadata_make(&tx_metadata, false, 0, 0.0, false, false);
if (error)
PDEBUG(DUHD, DEBUG_ERROR, "Failed to create TX metadata\n");
buffs_ptr[0] = buff;
count = 0;
error = uhd_tx_streamer_send(tx_streamer, buffs_ptr, chunk, &tx_metadata, 1.0, &count);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to write to TX streamer\n");
break;
}
if (count == 0)
break;
/* increment time stamp */
tx_time_fract_sec += (double)count / samplerate;
while (tx_time_fract_sec >= 1.0) {
tx_time_secs++;
tx_time_fract_sec -= 1.0;
}
//printf("adv=%.3f\n", ((double)tx_time_secs + tx_time_fract_sec) - ((double)rx_time_secs + rx_time_fract_sec));
sent += count;
buff += count * 2;
num -= count;
}
return sent;
}
/* read what we got, return 0, if buffer is empty, otherwise return the number of samples */
int uhd_receive(float *buff, int max)
{
void *buffs_ptr[1];
size_t got = 0, count;
uhd_error error;
while (1) {
if (max < (int)rx_samps_per_buff) {
/* no more space this time */
sdr_rx_overflow = 1;
break;
}
/* read RX stream */
buffs_ptr[0] = buff;
count = 0;
error = uhd_rx_streamer_recv(rx_streamer, buffs_ptr, rx_samps_per_buff, &rx_metadata, 0.0, false, &count);
if (error) {
PDEBUG(DUHD, DEBUG_ERROR, "Failed to read from UHD device.\n");
break;
}
if (count) {
/* get time stamp of received RX packet */
uhd_rx_metadata_time_spec(rx_metadata, &rx_time_secs, &rx_time_fract_sec);
/* commit received data to buffer */
got += count;
buff += count * 2;
max -= count;
} else {
/* got nothing this time */
break;
}
}
return got;
}
/* estimate number of samples that can be sent */
int uhd_get_tosend(int latspl)
{
double advance;
int tosend;
/* we need the rx time stamp to determine how much data is already sent in advance */
if (rx_time_secs == 0 && rx_time_fract_sec == 0.0)
return 0;
/* if we have not yet sent any data, we set initial tx time stamp */
if (tx_time_secs == 0 && tx_time_fract_sec == 0.0) {
tx_time_secs = rx_time_secs;
tx_time_fract_sec = rx_time_fract_sec;
if (tx_timestamps) {
tx_time_fract_sec += (double)latspl / samplerate;
if (tx_time_fract_sec >= 1.0) {
tx_time_fract_sec -= 1.0;
tx_time_secs++;
}
}
}
/* we check how advance our transmitted time stamp is */
advance = ((double)tx_time_secs + tx_time_fract_sec) - ((double)rx_time_secs + rx_time_fract_sec);
/* in case of underrun: */
if (advance < 0)
advance = 0;
tosend = latspl - (int)(advance * samplerate);
if (tosend < 0)
tosend = 0;
return tosend;
}

8
src/libsdr/uhd.h Normal file
View File

@@ -0,0 +1,8 @@
int uhd_open(size_t channel, const char *_device_args, const char *_stream_args, const char *_tune_args, const char *tx_antenna, const char *rx_antenna, double tx_frequency, double rx_frequency, double rate, double tx_gain, double rx_gain, double bandwidth, int _tx_timestamps);
int uhd_start(void);
void uhd_close(void);
int uhd_send(float *buff, int num);
int uhd_receive(float *buff, int max);
int uhd_get_tosend(int latspl);