Files
localtuya-modded/custom_components/localtuya/pytuya/__init__.py
fancygaphtrn 87a0ac2363 Fan support
2020-06-30 07:23:14 -04:00

679 lines
24 KiB
Python

# Python module to interface with Shenzhen Xenon ESP8266MOD WiFi smart devices
# E.g. https://wikidevi.com/wiki/Xenon_SM-PW701U
# SKYROKU SM-PW701U Wi-Fi Plug Smart Plug
# Wuudi SM-S0301-US - WIFI Smart Power Socket Multi Plug with 4 AC Outlets and 4 USB Charging Works with Alexa
#
# This would not exist without the protocol reverse engineering from
# https://github.com/codetheweb/tuyapi by codetheweb and blackrozes
#
# Tested with Python 2.7 and Python 3.6.1 only
import base64
from hashlib import md5
import json
import logging
import socket
import sys
import time
import colorsys
import binascii
try:
#raise ImportError
import Crypto
from Crypto.Cipher import AES # PyCrypto
except ImportError:
Crypto = AES = None
import pyaes # https://github.com/ricmoo/pyaes
version_tuple = (7, 0, 7)
version = version_string = __version__ = '%d.%d.%d' % version_tuple
__author__ = 'rospogrigio'
log = logging.getLogger(__name__)
logging.basicConfig() # TODO include function name/line numbers in log
#log.setLevel(level=logging.DEBUG) # Debug hack!
log.debug('%s version %s', __name__, version)
log.debug('Python %s on %s', sys.version, sys.platform)
if Crypto is None:
log.debug('Using pyaes version %r', pyaes.VERSION)
log.debug('Using pyaes from %r', pyaes.__file__)
else:
log.debug('Using PyCrypto %r', Crypto.version_info)
log.debug('Using PyCrypto from %r', Crypto.__file__)
SET = 'set'
STATUS = 'status'
PROTOCOL_VERSION_BYTES_31 = b'3.1'
PROTOCOL_VERSION_BYTES_33 = b'3.3'
IS_PY2 = sys.version_info[0] == 2
class AESCipher(object):
def __init__(self, key):
#self.bs = 32 # 32 work fines for ON, does not work for OFF. Padding different compared to js version https://github.com/codetheweb/tuyapi/
self.bs = 16
self.key = key
def encrypt(self, raw, use_base64 = True):
if Crypto:
raw = self._pad(raw)
cipher = AES.new(self.key, mode=AES.MODE_ECB)
crypted_text = cipher.encrypt(raw)
else:
_ = self._pad(raw)
cipher = pyaes.blockfeeder.Encrypter(pyaes.AESModeOfOperationECB(self.key)) # no IV, auto pads to 16
crypted_text = cipher.feed(raw)
crypted_text += cipher.feed() # flush final block
#print('crypted_text %r' % crypted_text)
#print('crypted_text (%d) %r' % (len(crypted_text), crypted_text))
if use_base64:
return base64.b64encode(crypted_text)
else:
return crypted_text
def decrypt(self, enc, use_base64=True):
if use_base64:
enc = base64.b64decode(enc)
#print('enc (%d) %r' % (len(enc), enc))
#enc = self._unpad(enc)
#enc = self._pad(enc)
#print('upadenc (%d) %r' % (len(enc), enc))
if Crypto:
cipher = AES.new(self.key, AES.MODE_ECB)
raw = cipher.decrypt(enc)
#print('raw (%d) %r' % (len(raw), raw))
return self._unpad(raw).decode('utf-8')
#return self._unpad(cipher.decrypt(enc)).decode('utf-8')
else:
cipher = pyaes.blockfeeder.Decrypter(pyaes.AESModeOfOperationECB(self.key)) # no IV, auto pads to 16
plain_text = cipher.feed(enc)
plain_text += cipher.feed() # flush final block
return plain_text
def _pad(self, s):
padnum = self.bs - len(s) % self.bs
return s + padnum * chr(padnum).encode()
@staticmethod
def _unpad(s):
return s[:-ord(s[len(s)-1:])]
def bin2hex(x, pretty=False):
if pretty:
space = ' '
else:
space = ''
if IS_PY2:
result = ''.join('%02X%s' % (ord(y), space) for y in x)
else:
result = ''.join('%02X%s' % (y, space) for y in x)
return result
def hex2bin(x):
if IS_PY2:
return x.decode('hex')
else:
return bytes.fromhex(x)
# This is intended to match requests.json payload at https://github.com/codetheweb/tuyapi
# device20 or device22 are to be used depending on the length of dev_id (20 or 22 chars)
payload_dict = {
"device20": {
"status": {
"hexByte": "0a",
"command": {"gwId": "", "devId": ""}
},
"set": {
"hexByte": "07",
"command": {"devId": "", "uid": "", "t": ""}
},
"prefix": "000055aa00000000000000", # Next byte is command byte ("hexByte") some zero padding, then length of remaining payload, i.e. command + suffix (unclear if multiple bytes used for length, zero padding implies could be more than one byte)
"suffix": "000000000000aa55"
},
"device22": {
"status": {
"hexByte": "0d",
"command": {"devId": "", "uid": "", "t": ""}
},
"set": {
"hexByte": "07",
"command": {"devId": "", "uid": "", "t": ""}
},
"prefix": "000055aa00000000000000", # Next byte is command byte ("hexByte") some zero padding, then length of remaining payload, i.e. command + suffix (unclear if multiple bytes used for length, zero padding implies could be more than one byte)
"suffix": "000000000000aa55"
}
}
class XenonDevice(object):
def __init__(self, dev_id, address, local_key=None, dev_type=None, connection_timeout=10):
"""
Represents a Tuya device.
Args:
dev_id (str): The device id.
address (str): The network address.
local_key (str, optional): The encryption key. Defaults to None.
dev_type (str, optional): The device type.
It will be used as key for lookups in payload_dict.
Defaults to None.
Attributes:
port (int): The port to connect to.
"""
self.id = dev_id
self.address = address
self.local_key = local_key
self.local_key = local_key.encode('latin1')
self.dev_type = dev_type
self.connection_timeout = connection_timeout
self.version = 3.1
self.port = 6668 # default - do not expect caller to pass in
def __repr__(self):
return '%r' % ((self.id, self.address),) # FIXME can do better than this
def _send_receive(self, payload):
"""
Send single buffer `payload` and receive a single buffer.
Args:
payload(bytes): Data to send.
"""
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
s.settimeout(self.connection_timeout)
s.connect((self.address, self.port))
except Exception as e:
print('Failed to connect to %s. Raising Exception.' % (self.address))
raise e
try:
s.send(payload)
except Exception as e:
print('Failed to send payload to %s. Raising Exception.' % (self.address))
#s.close()
raise e
try:
data = s.recv(1024)
# print("FIRST: Received %d bytes" % len(data) )
# sometimes the first packet does not contain data (typically 28 bytes): need to read again
if len(data) < 40:
time.sleep(0.1)
data = s.recv(1024)
# print("SECOND: Received %d bytes" % len(data) )
except Exception as e:
print('Failed to receive data from %s. Raising Exception.' % (self.address))
#s.close()
raise e
s.close()
return data
def set_version(self, version):
self.version = version
def generate_payload(self, command, data=None):
"""
Generate the payload to send.
Args:
command(str): The type of command.
This is one of the entries from payload_dict
data(dict, optional): The data to be send.
This is what will be passed via the 'dps' entry
"""
json_data = payload_dict[self.dev_type][command]['command']
command_hb = payload_dict[self.dev_type][command]['hexByte']
if 'gwId' in json_data:
json_data['gwId'] = self.id
if 'devId' in json_data:
json_data['devId'] = self.id
if 'uid' in json_data:
json_data['uid'] = self.id # still use id, no seperate uid
if 't' in json_data:
json_data['t'] = str(int(time.time()))
if data is not None:
json_data['dps'] = data
if command_hb == '0d':
json_data['dps'] = {"1": None,"101": None,"102": None}
# Create byte buffer from hex data
json_payload = json.dumps(json_data)
#print(json_payload)
json_payload = json_payload.replace(' ', '') # if spaces are not removed device does not respond!
json_payload = json_payload.encode('utf-8')
log.debug('json_payload=%r', json_payload)
#print('json_payload = ', json_payload, ' cmd = ', command_hb)
if self.version == 3.3:
self.cipher = AESCipher(self.local_key) # expect to connect and then disconnect to set new
json_payload = self.cipher.encrypt(json_payload, False)
self.cipher = None
if command_hb != '0a':
# add the 3.3 header
json_payload = PROTOCOL_VERSION_BYTES_33 + b"\0\0\0\0\0\0\0\0\0\0\0\0" + json_payload
elif command == SET:
# need to encrypt
#print('json_payload %r' % json_payload)
self.cipher = AESCipher(self.local_key) # expect to connect and then disconnect to set new
json_payload = self.cipher.encrypt(json_payload)
#print('crypted json_payload %r' % json_payload)
preMd5String = b'data=' + json_payload + b'||lpv=' + PROTOCOL_VERSION_BYTES_31 + b'||' + self.local_key
#print('preMd5String %r' % preMd5String)
m = md5()
m.update(preMd5String)
#print(repr(m.digest()))
hexdigest = m.hexdigest()
#print(hexdigest)
#print(hexdigest[8:][:16])
json_payload = PROTOCOL_VERSION_BYTES_31 + hexdigest[8:][:16].encode('latin1') + json_payload
#print('data_to_send')
#print(json_payload)
#print('crypted json_payload (%d) %r' % (len(json_payload), json_payload))
#print('json_payload %r' % repr(json_payload))
#print('json_payload len %r' % len(json_payload))
#print(bin2hex(json_payload))
self.cipher = None # expect to connect and then disconnect to set new
postfix_payload = hex2bin(bin2hex(json_payload) + payload_dict[self.dev_type]['suffix'])
#print('postfix_payload %r' % postfix_payload)
#print('postfix_payload %r' % len(postfix_payload))
#print('postfix_payload %x' % len(postfix_payload))
#print('postfix_payload %r' % hex(len(postfix_payload)))
assert len(postfix_payload) <= 0xff
postfix_payload_hex_len = '%x' % len(postfix_payload) # TODO this assumes a single byte 0-255 (0x00-0xff)
buffer = hex2bin( payload_dict[self.dev_type]['prefix'] +
payload_dict[self.dev_type][command]['hexByte'] +
'000000' +
postfix_payload_hex_len ) + postfix_payload
# calc the CRC of everything except where the CRC goes and the suffix
hex_crc = format(binascii.crc32(buffer[:-8]) & 0xffffffff, '08X')
buffer = buffer[:-8] + hex2bin(hex_crc) + buffer[-4:]
#print('command', command)
#print('prefix')
#print(payload_dict[self.dev_type][command]['prefix'])
#print(repr(buffer))
#print(bin2hex(buffer, pretty=False))
#print('full buffer(%d) %r' % (len(buffer), bin2hex(buffer, pretty=True) ))
#print('full buffer(%d) %r' % (len(buffer), " ".join("{:02x}".format(ord(c)) for c in buffer)))
return buffer
class Device(XenonDevice):
def __init__(self, dev_id, address, local_key=None, dev_type=None):
super(Device, self).__init__(dev_id, address, local_key, dev_type)
def status(self):
log.debug('status() entry (dev_type is %s)', self.dev_type)
# open device, send request, then close connection
payload = self.generate_payload('status')
data = self._send_receive(payload)
log.debug('status received data=%r', data)
result = data[20:-8] # hard coded offsets
if self.dev_type != 'device20':
result = result[15:]
log.debug('result=%r', result)
#result = data[data.find('{'):data.rfind('}')+1] # naive marker search, hope neither { nor } occur in header/footer
#print('result %r' % result)
if result.startswith(b'{'):
# this is the regular expected code path
if not isinstance(result, str):
result = result.decode()
result = json.loads(result)
elif result.startswith(PROTOCOL_VERSION_BYTES_31):
# got an encrypted payload, happens occasionally
# expect resulting json to look similar to:: {"devId":"ID","dps":{"1":true,"2":0},"t":EPOCH_SECS,"s":3_DIGIT_NUM}
# NOTE dps.2 may or may not be present
result = result[len(PROTOCOL_VERSION_BYTES_31):] # remove version header
result = result[16:] # remove (what I'm guessing, but not confirmed is) 16-bytes of MD5 hexdigest of payload
cipher = AESCipher(self.local_key)
result = cipher.decrypt(result)
log.debug('decrypted result=%r', result)
if not isinstance(result, str):
result = result.decode()
result = json.loads(result)
elif self.version == 3.3:
cipher = AESCipher(self.local_key)
result = cipher.decrypt(result, False)
log.debug('decrypted result=%r', result)
if not isinstance(result, str):
result = result.decode()
result = json.loads(result)
else:
log.error('Unexpected status() payload=%r', result)
# if self.dev_type == 'cover':
# result = result.encode('utf-8')
# log.debug('encoded result=%r', result)
return result
def set_status(self, on, switch=1):
"""
Set status of the device to 'on' or 'off'.
Args:
on(bool): True for 'on', False for 'off'.
switch(int): The switch to set
"""
log.debug("set_status: %s", on)
# open device, send request, then close connection
if isinstance(switch, int):
switch = str(switch) # index and payload is a string
payload = self.generate_payload(SET, {switch:on})
#print('payload %r' % payload)
data = self._send_receive(payload)
log.debug('set_status received data=%r', data)
return data
def set_value(self, index, value):
"""
Set int value of any index.
Args:
index(int): index to set
value(int): new value for the index
"""
log.debug("set_value: index=%s value=%s", index, value)
# open device, send request, then close connection
if isinstance(index, int):
index = str(index) # index and payload is a string
payload = self.generate_payload(SET, {
index: value})
data = self._send_receive(payload)
return data
def turn_on(self, switch=1):
"""Turn the device on"""
self.set_status(True, switch)
def turn_off(self, switch=1):
"""Turn the device off"""
self.set_status(False, switch)
def set_timer(self, num_secs):
"""
Set a timer.
Args:
num_secs(int): Number of seconds
"""
# FIXME / TODO support schemas? Accept timer id number as parameter?
# Dumb heuristic; Query status, pick last device id as that is probably the timer
status = self.status()
devices = status['dps']
devices_numbers = list(devices.keys())
devices_numbers.sort()
dps_id = devices_numbers[-1]
payload = self.generate_payload(SET, {dps_id:num_secs})
data = self._send_receive(payload)
log.debug('set_timer received data=%r', data)
return data
class OutletDevice(Device):
def __init__(self, dev_id, address, local_key=None):
if len(dev_id) == 22:
dev_type = 'device22'
else:
dev_type = 'device20'
super(OutletDevice, self).__init__(dev_id, address, local_key, dev_type)
class FanDevice(Device):
DPS_INDEX_SPEED = '2'
def __init__(self, dev_id, address, local_key=None):
if len(dev_id) == 22:
dev_type = 'device22'
else:
dev_type = 'device20'
super(FanDevice, self).__init__(dev_id, address, local_key, dev_type)
class CoverEntity(Device):
DPS_INDEX_MOVE = '1'
DPS_INDEX_BL = '101'
DPS_2_STATE = {
'1':'movement',
'101':'backlight',
}
def __init__(self, dev_id, address, local_key=None):
dev_type = 'device22'
print('%s version %s' % ( __name__, version))
print('Python %s on %s' % (sys.version, sys.platform))
if Crypto is None:
print('Using pyaes version ', pyaes.VERSION)
print('Using pyaes from ', pyaes.__file__)
else:
print('Using PyCrypto ', Crypto.version_info)
print('Using PyCrypto from ', Crypto.__file__)
super(CoverEntity, self).__init__(dev_id, address, local_key, dev_type)
def open_cover(self, switch=1):
"""Turn the device on"""
self.set_status('on', switch)
def close_cover(self, switch=1):
"""Turn the device off"""
self.set_status('off', switch)
def stop_cover(self, switch=1):
"""Turn the device off"""
self.set_status('stop', switch)
class BulbDevice(Device):
DPS_INDEX_ON = '1'
DPS_INDEX_MODE = '2'
DPS_INDEX_BRIGHTNESS = '3'
DPS_INDEX_COLOURTEMP = '4'
DPS_INDEX_COLOUR = '5'
DPS = 'dps'
DPS_MODE_COLOUR = 'colour'
DPS_MODE_WHITE = 'white'
DPS_2_STATE = {
'1':'is_on',
'2':'mode',
'3':'brightness',
'4':'colourtemp',
'5':'colour',
}
def __init__(self, dev_id, address, local_key=None):
dev_type = 'device20'
super(BulbDevice, self).__init__(dev_id, address, local_key, dev_type)
@staticmethod
def _rgb_to_hexvalue(r, g, b):
"""
Convert an RGB value to the hex representation expected by tuya.
Index '5' (DPS_INDEX_COLOUR) is assumed to be in the format:
rrggbb0hhhssvv
While r, g and b are just hexadecimal values of the corresponding
Red, Green and Blue values, the h, s and v values (which are values
between 0 and 1) are scaled to 360 (h) and 255 (s and v) respectively.
Args:
r(int): Value for the colour red as int from 0-255.
g(int): Value for the colour green as int from 0-255.
b(int): Value for the colour blue as int from 0-255.
"""
rgb = [r,g,b]
hsv = colorsys.rgb_to_hsv(rgb[0]/255, rgb[1]/255, rgb[2]/255)
hexvalue = ""
for value in rgb:
temp = str(hex(int(value))).replace("0x","")
if len(temp) == 1:
temp = "0" + temp
hexvalue = hexvalue + temp
hsvarray = [int(hsv[0] * 360), int(hsv[1] * 255), int(hsv[2] * 255)]
hexvalue_hsv = ""
for value in hsvarray:
temp = str(hex(int(value))).replace("0x","")
if len(temp) == 1:
temp = "0" + temp
hexvalue_hsv = hexvalue_hsv + temp
if len(hexvalue_hsv) == 7:
hexvalue = hexvalue + "0" + hexvalue_hsv
else:
hexvalue = hexvalue + "00" + hexvalue_hsv
return hexvalue
@staticmethod
def _hexvalue_to_rgb(hexvalue):
"""
Converts the hexvalue used by tuya for colour representation into
an RGB value.
Args:
hexvalue(string): The hex representation generated by BulbDevice._rgb_to_hexvalue()
"""
r = int(hexvalue[0:2], 16)
g = int(hexvalue[2:4], 16)
b = int(hexvalue[4:6], 16)
return (r, g, b)
@staticmethod
def _hexvalue_to_hsv(hexvalue):
"""
Converts the hexvalue used by tuya for colour representation into
an HSV value.
Args:
hexvalue(string): The hex representation generated by BulbDevice._rgb_to_hexvalue()
"""
h = int(hexvalue[7:10], 16) / 360
s = int(hexvalue[10:12], 16) / 255
v = int(hexvalue[12:14], 16) / 255
return (h, s, v)
def set_colour(self, r, g, b):
"""
Set colour of an rgb bulb.
Args:
r(int): Value for the colour red as int from 0-255.
g(int): Value for the colour green as int from 0-255.
b(int): Value for the colour blue as int from 0-255.
"""
if not 0 <= r <= 255:
raise ValueError("The value for red needs to be between 0 and 255.")
if not 0 <= g <= 255:
raise ValueError("The value for green needs to be between 0 and 255.")
if not 0 <= b <= 255:
raise ValueError("The value for blue needs to be between 0 and 255.")
#print(BulbDevice)
hexvalue = BulbDevice._rgb_to_hexvalue(r, g, b)
payload = self.generate_payload(SET, {
self.DPS_INDEX_MODE: self.DPS_MODE_COLOUR,
self.DPS_INDEX_COLOUR: hexvalue})
data = self._send_receive(payload)
return data
def set_white(self, brightness, colourtemp):
"""
Set white coloured theme of an rgb bulb.
Args:
brightness(int): Value for the brightness (25-255).
colourtemp(int): Value for the colour temperature (0-255).
"""
if not 25 <= brightness <= 255:
raise ValueError("The brightness needs to be between 25 and 255.")
if not 0 <= colourtemp <= 255:
raise ValueError("The colour temperature needs to be between 0 and 255.")
payload = self.generate_payload(SET, {
self.DPS_INDEX_MODE: self.DPS_MODE_WHITE,
self.DPS_INDEX_BRIGHTNESS: brightness,
self.DPS_INDEX_COLOURTEMP: colourtemp})
data = self._send_receive(payload)
return data
def set_brightness(self, brightness):
"""
Set the brightness value of an rgb bulb.
Args:
brightness(int): Value for the brightness (25-255).
"""
if not 25 <= brightness <= 255:
raise ValueError("The brightness needs to be between 25 and 255.")
payload = self.generate_payload(SET, {self.DPS_INDEX_BRIGHTNESS: brightness})
data = self._send_receive(payload)
return data
def set_colourtemp(self, colourtemp):
"""
Set the colour temperature of an rgb bulb.
Args:
colourtemp(int): Value for the colour temperature (0-255).
"""
if not 0 <= colourtemp <= 255:
raise ValueError("The colour temperature needs to be between 0 and 255.")
payload = self.generate_payload(SET, {self.DPS_INDEX_COLOURTEMP: colourtemp})
data = self._send_receive(payload)
return data
def brightness(self):
"""Return brightness value"""
return self.status()[self.DPS][self.DPS_INDEX_BRIGHTNESS]
def colourtemp(self):
"""Return colour temperature"""
return self.status()[self.DPS][self.DPS_INDEX_COLOURTEMP]
def colour_rgb(self):
"""Return colour as RGB value"""
hexvalue = self.status()[self.DPS][self.DPS_INDEX_COLOUR]
return BulbDevice._hexvalue_to_rgb(hexvalue)
def colour_hsv(self):
"""Return colour as HSV value"""
hexvalue = self.status()[self.DPS][self.DPS_INDEX_COLOUR]
return BulbDevice._hexvalue_to_hsv(hexvalue)
def state(self):
status = self.status()
state = {}
for key in status[self.DPS].keys():
if(int(key)<=5):
state[self.DPS_2_STATE[key]]=status[self.DPS][key]
return state